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INTRODUCTION

The present report is the first in a series to be written according to contract
F61708-97-W0126. It was assumed that at this stage a method of solution of the
wave equation governing propagation of beams in the atmosphere should be
described. The atmosphere must be considered as a turbulent, scattering, and
absorbing medium. Accurate description of phase and intensity fluctuations of
optical waves should also be included in the method.

The splitting algorithm of solution that we chose gives one the possibility to
realize efficient computational algorithms that take into account all important
parameters of optical experiment.

Randomly inhomogeneous atmosphere was described using models for the
main atmospheric parameters.

A model of atmospheric turbulence. Modeling atmospheric turbulence on the
path of propagation we used Kolmogorov - Obukhov model. Characteristic
feature of this model is infinite outer scale of turbulence. Models allowing for
deviations of turbulent spectrum in low frequency region were also introduced in
our algorithm.

A finite size of the outer scale and possibility to use von Karman,
Greenwood and some other models was proved in the early seventies by Dr. S.
Clifford and was also confirmed by our researches. The fact that the outer scale is
finite in the atmospheric boundary layer was demonstrated by a number of
authors, namely, by Dr. M. Sarazin (experiments were performed in Chili), by
Dr. S. McKecknie (Arizona region), and also by measurements at Mauna Kea
(Hawaii), and by our own experiments.

Numerous results obtained experimentally allow as to introduce in our
model a finite outer scale of atmospheric turbulence. Computing variance of
phase fluctuation. for the first time we have compared three the most widely used

models of turbulent atmosphere.
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Using the models of vertical distribution of turbulence intensity, wind
velocity, and outer scale of turbulence. for the vertical atmospheric column we
introduced .s_uch parameter as an effective outer scale of turbulence, also for the
first time.

All in all, materials presented in the two chapters of this report can be
viewed as a base for a computer code simulating laser beams propagation in the
atmosphere undér various conditions. Namely, coherent and partially coherent
beams can be described, as well as high-power beams propagating along vertical,
slanted, and horizontal paths. Using our models it is possible to compare results
of numerical experiments with data of well-known field experiments (for example,
with such experiments of US Air Force Phillips Lab as HABE and ARL).
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CHAPTER I. A MODEL OF THE ATMOSPHERE

1.1. Altitude profiles of atmospheric parameters

Altitude profile of turbulence intensity C ;E 1S an important parameter

determining such kev parameters as coherence length . size of anisoplanatic patch

and some others. In Russia, basing on regular field experiments, semiempirical
model of Cr::' dependence on altitude was developed by Gurvich and Gracheva

/15/. The model corresponds to three types of atmospheric conditions:

a) the «best» conditions of propagation (weak turbulence),
~ ) 3 3
C';}{h[km]_} —5.19.107 16 .10 0864  1-18.34+029h-0.02844% 4000074317 . (] |y
b) the «worst» conditions of propagation (strong turbulence);

2 3
Cﬁ{hlkm]) -95. lﬂ—l4 : ]”—?..l]"'}fl + lu—]-l-.]-';rﬂ.l?ff—-ﬂ.ﬂj-ﬂ-ﬁh 00009594 | ([2)

¢) «average» conditions of propagation

C2(h) = J&';}{besr}-(‘;f{warﬂ] : (1.3)

Graphics of C,f dependence on altitude corresponding to these conditions are

presented in Fig. 1.1.
Along with this model we also use well-known models such as the model of

Maui Air Force Optical Station /20/ denoted as SLC model /1, 20/.

Daytime model Nighttime model
Altitude range C,> value Altitude range C,? value
h<18,5m 1.70x10-14 h<18,5m §.4x10°13
18.5 < h < 240m | 3.13x10-13/h 18.5< h < 110m | 2.87x10°12/K2
240 < h < 880 1.3x10°13 110 < h < 1500 8.4x10-15
880 < h < 7200 8.87x10°7/h 1500 < h < 7200 | 8.87x10°7/K°
7200 < h < 20000 | 2.00x10-16/4%5 7200 < h < 20000 | 2.00x10-16/40-5

The outer scale of a turbulence defines variance of centroid jitter for beams

and images. With a laser guide star possibility of correction for turbulent jitter in




—

I [

an adaptive optics system is principally limited, so in such systems the outer scale

influences greatly residual errors.

Also we have analyzed a number of models descriptions of which were
published. Namely, the Greenwood good seeing model /21/ and the Hufnagel-
Vally model /22/ with an upper atmospheric wind of 54 miles per hour

(=24 m/s).

Presently, there exist a lot of models of Lg(h) altitude profiles. Some

models are presented below:
04 h<lm

- 1.4
(4) Lo(h) {0.4}1 > Im )
04 h<lm
(B) Log(h)=404h 1 <h<25m (1.5)
2Wh h>25m
04 h<lm
04h 1 <h<25m
= ) 1.6
© lﬂ{h) ZJ'E 25 < h < 1000m (1:9)
241000 4 > 1000m
5
D h) = 5 (1.7)
= Lof ) 1 h—7500 .
L2000, 1 =
4
(E)  Lo(h)= (1.8)

[h —smur
1+ ==
2500

The model (A) is recommended by the authors of Ref. 14 for small
heights, (B) is proposed by Fried /1.3/, and (C) is the generalization of models
(A) and (B). Shortcomings of the model (A) are well-known so it was not
considered in this report. The models (D) and (E) are obtained by generalizing
the resulis of measurements performed in the USA, France, and Chile / 1.4.5/.

The vertical profiles corresponding to these models are presented in
Fig.1.2. As one can see, the graphs (E) and (D) are similar in character of growth




and in the presence of maximal value at a certain height; so one can consider the
first model and obtain the main features of the second.

Wind velocity is a parameter that influence turbulent as well as nonlinear
effects which appear at high-power beam propagation in the atmosphere. In the
first case wind velocity defines the time of turbulent inhomogeneties transition
through a cross section of a beam or an aperture of a telescope that influence
temporal spectra of intensity and phase fluctuations of optical waves. So wind
speed imposes additional requirements on the temporal bandwidth of adaptive
control.

At thermal blooming of high-power beams time of transient processes is
also dependent on wind speed. Moreover, wind speed is a parameter that
determine intensity of thermal blooming along with a molecular and aerosol
absorption because phase aberrations on a path of propagation are inversely
proportional to wind velocity.

In our calculation we often use Bufton’s model /1/. This model 1s

described by the following eguation

‘ h—9400T
Vih)\ =V, + 25 Bt it 1.9
(k) =V, S.Dexp[ } ] : (1.9)

where V, is a parameter of the model corresponding to the wind speed near the
surface. We assume that ¥, = 5 m/s.

Of course, one should keep in mind that the wind velocity changes during
a year and even during a day. Moreover, the wind velocity is dependent from
geographical position of a site. So for every particular case a particular model

should be chosen.
[t should also be emphasized that the model of a beam propagating in the

atmosphere includes a transverse component of vector sum of the wind velocity

and velocity of slewing.
Absorption of optics energy by air is a cause of well-known nonlinear effect

referred to as thermal blooming. The coefficient of absorption is a sum of two

components: molecular o, and aerosol «,. The both components are functions of

wavelenght:




Qabs = Apm(X) +a (). (1.10)
Atmospheric aerosol absorbs and scatters radiation. so the whole extinction of
radiation is the sum of three components: molecular absorption «,,, aerosol

absorption «,, and aerosol scattering oy
h, km .
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Fig. 1.1 Altitude profiles of turbulence intensity
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Fig. 1.2 Altitude profiles of the outer scale of turbulence.



Fig. 1.3. Altitude profiles of absorption and extinction coefficients.




Oyt = Oy + 0, +0. (1.11)

All the terms in this equation are functions of wavelength., but the sharpest
dependence on wavelength is characteristic for molecular absorption. There are
specialized spectroscopic databases and models of altitude profiles of atmosphere
gaseous composition using which i1s possible to compute altitude profiles of
molecular absorption. Atmosphere gaseous composition depends upon season and
altitude of the site so several altitude profiles correspond to every wavelength. As
an example let us consider altitude profiles for the following wavelengths: 0.248,
0.438, 0.514, 0.53, 1,375, and 3.8um. For every wavelength the model are
presented characteristic to tropics, winter of mid-latitudes, and summed of mid-
latitudes (see Tables 1.1 - 1.7). Moreover, for every case we present AGFL model
and a model of the Institute of Atmospheric Optics, Siberian Brunch of RAS
(IAO). The models are shown up to 10 km, but the whole models include profiles
up to 60 km.

Let us consider the joint effect of molecular and aerosol absorption for
radiation with 2 = 1.315 um. In Table 1.5 there presented altitude profiles of the
summarized absorption and extinction. The index of absorption determines phase
distortions for a high-power beams and the index of integral extinction, which
takes into account aerosol dispersion, allows for decrease of a beam power along
a propagation path. To calculate parameters presented in this Table (and also in
the other Tables) we used AFGL model for mid-latitude summer and the mean
cycle model for aerosol absorption and extinction. These profiles are shown in
Fig. 1.3.

Temperature 7 and pressure P enter into the model of thermal blooming as
parameters which determine a proportionality coefficient between variations of

temperature and that of the index of refraction

= an _ on P
s et =10 (1.12)
an ET{’T 3T =)

Into this equation pressure should be substituted in torres and temperature in K¢

[n Table 1.8 and Table 1.9 models of temperature and pressure are presented for

different latitudes.
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Profiles of absorption change more than profiles of temperature and

pressure, so profiles of T and P can be calculated by simple formulas. In

particular, for temperature the following model can be used

T(hfkm])= {

Ty-(1=h/ 60).h<15km

0.75-T, h>15km

Iy = 290K

Table [.1. Model of altitude profile of molecular absorption coefficient (in km'),

wavelength A = 0.248 pm.

Altitude, Tropics Summer of Winter
kim mid-latitudes of mid-latitudes
1AO AFGL IAO AFGL IAO AFGL
0 S5458E+00 .7525E+00 [.5668E+00 .8066E+00 [.5607E+00 .8065E+00
; SS83E+00 .7555E+00 |.7092E+00 .8068E+00 |.6484E+00 .7642E+00
1.0 ST00E+00 .7521E+00 |.8083E+00 .8066E+00 [.7091E+00 .7253E+00
1.5 S847E+00 .7402E+00 |.8448E+00 .8022E+00 |.7307E+00 .6836E+00
2.0 S903E+00 .7249E+00 |.8738E+00 _8048E+00 |.7481E+00 .6583E+00
2.5 SS806E+00 .7060E+00 | .8956E+00 .8186E+00 |.7658E+00 .6581E+00
3.0 5733E+00 .6842E+00 |9083E+00 .8323E+00 |.7706E+00 .6580E-+00
3.5 5710E+00 .6543E+00 | 9089E+00 .8458E+00 |.7571E+00 .6438E+00
4.0 S6S9E+00 .6310E+00 |9053E+00 .8593E+00 |.7402E+00 .6585E+00
4.5 55T4E+00 .6179E+00 |.8966E+00 .8709E+00 |.7124E+00 .7234E+00
5.0 5467E+00 .6047E+00 |.884SE+00 .8860E+00 |.6961E+00 .7789E-+00
55 5315E+00 .5912E+00 |.8689E+00 .9017E+00 [.6969E+00 .8082E+00
6.0 SISTE+00 .5776E+00 | .8514E+00 9268E-+00 |.699SE+00 .8599E+00
6.5 SOS0E+00 .5638E+00 |.8292E+00 .9697E+00 |.6980E+00 .9467E+00
7.0 S000E+00 .5502E+00 |.8112E+00 .1006E+01 |.7104E+00 .1034E+01
o 4950E+00 .5336E+00 |.7986E+00 .1029E+01 |.7405E+00 .1094E+01
8.0 4930E+00 .5235E+00 |.7880E+00 .1061E+01 [.7790E+00 .1209E+01
8.5 4976E+00 .5236E+00 [.7643E+00 .1113E+01 |.7895E+00 .1396E+01
9.0 4986E+00 .5237E+00 |.7736E+00 .1154E+01 [.8831E+00 .1614E+01
9.5 4915E+00 .5208E+00 |.8169E+00 .1152E+01 [.1112E+01 .1862E+0I
10.0 4890E+00 .5241E+00 |.8968E+00 .1204E+01 |.1329E+01 .2148E+01
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Table 1.2. Model of altitude profile of molecular absorption coefficient (in km'),

wavelength A = 0.438 um.

Altitude, Tropics Summer of Winter
km mid-latitudes of mid-latitudes
IAO AFGL IAO AFGL IAO AFGL
0 1736E-02 .1070E-04 |.1777E-02 .1090E-04 |.1917E-02 .1184E-04
3 J1416E-02 .1022E-04 |.1442E-02 .1037E-04 |.1543E-02 .1119E-04
1.0 1143E-02 .9747E-05 |.1160E-02 .9860E-05 [.1231E-02 .1057E-04
15 9295E-03 .9304E-05 |.9432E-03 .9369E-05 |.9922E-03 .9989E-05
2.0 J489E-03 .8861E-05 |.7593E-03 .8905E-05 [.7924E-03 .9430E-05
25 6081E-03 .8403E-05 |.6156E-03 .8469E-05 |.6391E-03 .8890E-05
3.0 4895E-03 .7981E-05 |4948E-03 .8053E-05 [5111E-03 .8395E-05
3.5 3978E-03 .7602E-05 |[4021E-03 .7659E-05 [.4138E-03 .7954E-05
4.0 3202E-03 .7236E-035 |.3235E-03 .7279E-05 [.3315E-03 .7531E-05
4.5 2601E-03 .6887E-05 [.2626E-03 .6916E-05 [.2679E-03 .7126E-05
5.0 2090E-03 .6549E-05 |.2110E-03 .6566E-05 |.2145E-03 .6738E-05
5.5 1690E-03 .6224E-05 |.1710E-03 .6228E-05 |.1736E-03 .6368E-05
6.0 1355E-03 .5910E-05 |.1373E-03 .5904E-05 [.1390E-03 .6012E-05
6.5 1100E-03 .5611E-05 [.1112E-03 .5393E-05 |.1124E-03 .5674E-05
7.0 8839E-04 .5323E-05 [.8923E-04 _5296E-05 |.8980E-04 .5350E-05
735 7166E-04 .5044E-05 |.7229E-04 .5011E-05 |.7230E-04 .5037E-05
8.0 5749E-04 4782E-05 |.53795E-04 .4746E-05 |.5762E-04 .4747E-05
8.5 4225E-04 .4535E-05 |.4266E-04 .4503E-05 |4236E-04 .4479E-05
9.0 3723E-04 .4314E-05 |.3758E-04 .4282E-05 |3703E-04 .4236E-05
9.5 4684E-04 4101E-05 |.4716E-04 .4063E-05 |.4607E-04 .4011E-05
10.0 5959E-04 .3954E-05 |.5980E-04 .3913E-05 |.5788E-04 .3830E-05
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Table 1.3. Model of altitude profile of molecular absorption coefficient (in km),

wavelength A = 0.514 pm.

12

Altitude, Tropics Summer of Winter
km mid-latitudes of mid-latitudes

IAO AFGL TAO AFGL IAO AFGL
0 A725E-02 .1121E-03[.1768E-02 .1196E-03 |.1900E-02 .1184E-04
; 1422E-02 1121 E-03].1468E-02 .1192E-03 [.1556E-02 .1119E-04
1.0 A1164E-02.1112E-03[.1213E-02 .1187E-03 [.1267E-02 .1057E-04
LS 9625E-03 .1091 E:{IE JA011E-02 .1176E-03 [ 1042E-02 .9989E-05
2.0 7912E-03 .1066E-03|.8395E-03 .1175E-03 |.8539E-03 .9430E-05
2.5 6558E-03 .1036E-03|.7056E-03 _.1190E-03 [.7102E-03 .8890E-05
3.0 5418E-03 .1003E-03{.5923E-03 .1204E-03 [.5890E-03 .8395E-05
3.5 4542E-03 9588E-04/.5040E-03 .1219E-03 | 4945E-03 .7954E-05
4.0 3795E-03 .9237E-04|.4287E-03 .1234E-03 | 4139E-03 .7531E-05
4.5 3211E-03 .9027E-04/.3694E-03 .1246E-03 |.3495E-03 .7126E-05
5.0 2711E-03 .8816E-04|.3188E-03 .1263E-03 [.2965E-03 .6738E-05
55 2311E-03 .8602E-04|.2787E-03 .1281E-03 |.2578E-03 .6368E-05
6.0 1977E-03 .8388E-04/.2444E-03 .1312E-03 |.2255E-03 .6012E-05
6.5 1722E-03 .8172E-04|.2168E-03 .1367E-03 |.2001E-03 .5674E-05
7.0 1507E-03 .7960E-04/.1936E-03 .1414E-03 |.1805E-03 .5350E-05
e 1342E-03 .7710E-04|.1759E-03 .1442E-03 |.1681E-03 .5037E-05
8.0 1206E-03 .7549E-04|.1610E-03 .1483E-03 |.1595E-03 .4747E-05
8.5 1069E-03 .7526E-04.1434E-03 .1550E-03 |.1465E-03 .4479E-05
9.0 1023E-03 .7506E-04].1399E-03 .1604E-03 [.1543E-03 .4236E-05
9.5 1107E-03 .7447E-04|.1551E-03 .1600E-03 |.1940E-03 .4011E-05
10.0 1226E-03 .7477E-04/.1780E-03 .1669E-03 |.2347E-03 .3830E-05
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Table 1.4. Model of alititude profile of molecular absorption coefficient (in km'),

wavelength A = 0.53 um.

13

Altitude, Tropics Summer of Winter
km mid-latitudes of mid-latitudes

IAO AFGL IAO AFGL [AO AFGL
0 J467E-02 .1821E-03|.1501E-02 .1919E-03[.1605E-02 .I879E-03
(9 1220E-02 .1805E-03[.1272E-02 .1901E-03|.1334E-02 .1778E-03
1.0 A011E-02 .1779E-03/.1075E-02 .1885E-03|.1106E-02 .1685E-03
1.5 .8475E-03 .1741 E-03|.9141E-03 .1862E-03|.9253E-03 .1587E-03
2.0 .7081E-03 .1694E-03|.7776E-03 .1857E-03.7743E-03 .1525E-03
2o 5964E-03 .1638E-03/.6708E-03 .1878E-03].6594E-03 .1519E-03
3.0 5025E-03 .1579E-03|.5798E-03 .1900E-03|.53614E-03 .1514E-03
35 4307E-03 .1505E-03|.5079E-03 .1924E-03|.4830E-03 .1478E-03
4.0 3693E-03 .1448E-03|.4461 E-03 .1949E-03|.4157E-03 .1506E-03
4.5 3207E-03 .1415E-03|.3969E-03 .1970E-03|.3603E-03  .1645E-03
5.0 2788E-03 .1382E-03[.3544E-03 .1999E-03|.3154E-03 .1763E-03
55 2448E-03 .1349E-03[.3202E-03 .2030E-03|.2843E-03 .1825E-03
6.0 2163E-03 .1316E-03/.2906E-03 .2082E-03|.2584E-03 .1935E-03
6.5 1945E-03 .1283E-03|.2659E-03 .2174E-03.2378E-03 .2123E-03
7.0 1762E-03 .1250E-03|.2452E-03 .2252E-03|.2234E-03 .2312E-03
75 1624E-03 .1211E-03/.2295E-03 .2300E-03|.2168E-03 .2441E-03
8.0 1512E-03 .1187E-03|.2164E-03 .2367E-03|.2141E-03 .2691E-03
8.5 1407E-03 .1185E-03].1996E-03 .2478E-03|.2048E-03 .3101E-03
9.0 1372E-03 .1184E-03|.1979E-03 .2567E-03|.2215E-03 .3578E-03
9.5 1433E-03 .1175E-03[.2150E-03 .2562E-03[.2789E-03 .4121E-03
10.0 1527E-03 .1181E-03|.2425E-03 .2674E-03|.3359E-03  .4747E-03
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Table 1.5. Model of altitude profile of molecular absorption coefficient (in knr'),

wavelength A = 1.375 um.

Altitude, Tropics Summer of Winter
km mid-latitudes of mid-latitudes
[AO AFGL IAO AFGL IAO AFGL

0 6877TE+02 .7473E+02|4685E+02 .5595E+02 [.2111E+02 .1541E+02
5 S486E+02 .5982E+02|.3748E+02 4421E+02 |.1674E+02 .1256E+02
1.0 4284E+02 4780E+02[.2959E+02 .3440E+02 [.1300E+02 .1019E+02
[E5 3261 E+02 .4007E+02|.2313E+02 .2663E+02 |.9692E+01 .8387E+01
2.0 2442E+02 .3182E+02|.1781E+02 .2012E+02 |.7200E+01 .6783E+01
2.5 1830E+02 .2194E+02|.1368E+02 .1461E+02 |.5663E+01 .5378E+01
3.0 A357E+02 .1462E+02[.1036E+02 .1041E+02 |.4354E+01 .4151E+01
3.5 J1030E+02 .9678E+01|.7865E+01 .7727E+01 |.3200E+01 .2997E+01
4.0 .7745E+01 .6345E+01[.5886E+01 .5573E+01 [.2308E+01 .2120E+01
4.5 6019E+01 .5147E+01[.4507E+01 .3928E+01 [.1717E+01 .1568E+01
5.0 A4577E+01 .4046E-+01|.3347E+01 .2728E+01 [.1246E+01 .1132E-+01
5.5 3421E+01 .2971E+01|.2379E+01 .2064E+01 |.8983E+00 .8289E+00
6.0 2512E+01 .2129E+01[.1641E+01 .1539E+01 [.6269E-+00 .5772E+00
6.5 1861E+01 .1347E+01|.1140E+01 .1166E+01 |.4324E+00 .3524E+00
7.0 1317E+01 .1093E+01|.7816E+00 .8635E+00 |.2971E+00 .2150E+00
75 8335E+00 .7829E+00|.6061 E+00 .6322E+00 [.1549E+00 .1324E+00
8.0 5274E+00 .5395E+00|.4580E+00 4333E+00 [.8101E-01 .8147E-01
8.5 3534E+00 .3593E+00|.3354E+00 .3342E-+00 |.5258E-01 .5399E-01
9.0 2367TE+00 .2392E+00|.2382E+00 .2394E+00 |.3374E-01 .3403E-01
9.5 1463E+00 .1483E+00|.1671E+00 .1677E+00 |.2206E-01 .2245E-01l
10.0 9057E-01 .9195E-01 |.1167E+00 .1174E+00 |.1397E-01 .1453E-01
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Table 1.6. Model of altitude profile of molecular absorption coefficient -( in km'),

wavelength A = 3.8 um.
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Altitude, Tropics Summer of Winter
km mid-latitudes of mid-latitudes

H.,km [AO AFGL IAO AFGL IAO AFGL
0 .3697E-01 .4008E-01/.2654E-01 .3129E-01[.1408E-01 .1173E-01
1 2956E-01 .3218E-011.2118E-01 .2471E-01[.1129E-01 .9665E-02
1.0 2271E-01 .2534E-01[.1687E-01 .1944E-01[9161E-02 .8165E-02
1S A736E-01 .2126E-01].1288E-01 .1472E-01].6718E-02 .6987E-02
2.0 A310E-01 .1691E-01).1011E-01 .1135E-01[.5356E-02 .5391E-02
2.5 J1000E-01 .1193E-01|.7886E-02 .8558E-02|.4362E-02 .4520E-02
3.0 .7633E-02 .8251E-02|.6179E-02 .6352E-02[.3599E-02 .3766E-02
3. 5974E-02 .5835E-02/.4891E-02 .4968E-02|.2935E-02 .3005E-02
4.0 4675E-02 .4209E-02|.3874E-02 .3869E-02|.2404E-02 .2470E-02
4.5 .3772E-02 .3528E-02|.3136E-02 .3014E-02[.2006E-02 .2081E-02
5.0 3016E-02 .2919E-02|.2516E-02 .2377E-02|.1682E-02 .1750E-02
5.5 1801E-02 .2338E-02].1375E-02 .1966E-02|.1417E-02 .1490E-02
6.0 1377E-02 .1875E-02|.1030E-02 .1627E-02{.6292E-03 .1259E-02
6.5 1071E-02 9497E-03|.7908E-03 .8004E-03|.5087E-03 .4839E-03
7.0 8155E-03 .7338E-03/.6135E-03 .6424E-03|.4199E-03 .3929E-03
15 5965E-03 .5794E-03|.5085E-03 .5168E-03|.3342E-03 .3272E-03
8.0 4451E-03 .4522E-03|.4152E-03 .4144E-03[.2749E-03 .2760E-03
8.5 3526E-03 .3553E-03[.3427E-03 .3410E-03|.2346E-03 .2337E-03
9.0 2840E-03 .2855E-03|.2813E-03 .2802E-03|.2013E-03 .2001E-03
9.5 2309E-03 .2323E-03[.2341E-03 .2328E-03|.1726E-03 .1726E-03
10.0 1916E-03 .1926E-03[.1961E-03 .1951E-03[.1479E-03 .1482E-03
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Table 1.7. Model of altitude profile of absorption and extinction coefficients (in

kni-'), wavelength 4 = 3.8 um.
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H(km) | aps(km™)) | ctee(km™) | h(km) | cap(km™!) | ctea(km?)
0 7.329E-2 1.2439E-1 | 10.5 9.6825E-5 | 2.4872E-4
0.5 5.435E-2 |9.097E-2 |11 7.343E-5 | 3.6672E-4
1 3.828E-2 6.054E-2 11.5 5.8165E-5 |[2.5178E-4
1.5 2.849E-2 4.472E-2 12 4.29E-5 1.3683E-4
2 2.0381E-2 | 3.069E-2 12.5 3.739E-5 1.2521E-4
2.5 1.4353E-2 | 2.137E-2 13 3.188E-5 1.1358E-4
3 9.914E-3 1.3609E-2 | 13.5. 2.782E-5 1.0346E-4
3.5 7.136E-3 9.364E-3 14 2.376E-5 9.334E-5
4 4981E-3 5.739E-3 14.5 2.0775E-5 | 8.865E-5
4.5 3.4217E-3 | 3.938E-3 15 1.779E-5 8.396E-5
5 2.3103E-3 |2.585E-3 [ 155 1.5725E-5 | 8.024E-5
5.5 1.7122E-3 | 1.886E-3 |16 1.366E-5 | 7.652E-5
6 1.249E-3 1.3233E-3 | 16.5 1.2356E-5 | 8.1125E-5
6.5 9.3248E-4 |9.761E-4 |17 I.1051E-5 |8.5731E-5
7 6.8436E-4 | 6.974E-4 17.5 1.0095E-5 | 9.069E-5
7.5 5.0378E-4 |5.151E-4 |18 9.139E-6 | 9.5649E-5
8 3.684E-4 3.781E-4 18.35 8.0455E-6 | 8.4931E-5
8.5 2.7851E-4 | 2.882E-4 19 6.952E-6 7.4212E-5
9 2.0881E-4 | 2.185E-4 19.5 6.081E-6 6.3716E-3
9.5 1.5692E-4 | 1.67E-4 20 5.21E-6 5.322E-5
10 1.2022E-4 | 1.307E-4




Table 1.8. Altitude profiles of pressure (in atm)
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Altitude, Tropics Summer of Winter
km mid-latitudes of mid-latitudes
IAO AFGL IAO AFGL [IAO AFGL

0 1013E+01 [1013E+01 L1013E+01 [1013E+01 [1018E+01 [ 1018E+01
5 9573E+00 [9573E400 9561 E+00 9561 E+00 [.9560E+00 [9560E+00
1.0 9040E+00 |.9040E+00 9020E+00 |9020E+00 [.8973E+00 |.8973E+00
1.5 .8534E+00 [.8534E+00 .8510E+00 [.8510E+00 |.8420E+00 |.8420E+00
2.0 8050E+00 [8OS0E+00 [8020E+00 [8020E+00 |.7897E+00 [7897E+00
=5 7590E+00 [7590E+00 .7548E+00 |7548E+00 [.7405E+00 (7405E+00
3.0 7150E+00 [7150E+00 [7100E+00 .7100E+00 |.6938E+00 |.6938E+00
3.5 6730E+00 [.6730E+00 L6680E+00 [6680E+00 |.6498E+00 | 6498E+00
4.0 6330E+00 |.6330E+00 |6280E+00 .6280E+00 [.6081E+00 6081 E+00
4.5 5951E+00 [5951E+00 [.5901 E+00 5901 E+00 |.5687E+00 |.5687E+00
5.0 5590E+00 [.5590E+00 |.5540E+00 |.5540E+00 |.5313E+00 |.5313E+00
v s 5246E+00 |.5246E+00 [.3197E+00 |5197E+00 [4961E+00 |.4961E+00
6.0 4920E+00 [4920E+00 | 4870E+00 |[4870E+00 |4627E+00 [4627E+00
6.5 4613E+00 [4613E+00 | 4556E+00 | 4556E+00 [4313E+00 [4313E+00
7.0 4320E+00 [.4320E+00 |4260E+00 |.4260E+00 [4016E+00 [4016E+00
7.5 4044E+00 |.4044E+00 |.3983E+00 |.3983E+00 [3737E+00 |.3737E+00
3.0 3780E+00 [3780E+00 |.3720E+00 [ 3720E+00 |.3473E+00 |.3473E+00
8.5 3528E+00 |.3528E+00 |.3474E+00 |.3474E+00 |.3225E+00 |.3226E+00
9.0 3290E+00 |.3290E+00 |.3240E+00 |.3240E+00 .2992E+00 |.2993E+00
9.5 3070E+00 |.3070E+00 |.3019E+00 [3019E+00 .2773E+00 |.2773E+00
10.0 2860E+00 |.2860E+00 | 2810E+00 |.2810E+00 [2568E+00 | 2568E+00
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Table 1.9. Altitude profiles of temperature (in K°)

Altitude, Tropics Summer of Winter
km mid-latitudes |of mid-latitudes
H,xm | IAO | AFGL | IAO | AFGL | TAO | AFGL
0 299.0 | 299.7 | 292.0 | 294.2 | 272.0 | 2722
S5 | 2959 | 296.7 | 290.1 | 292.0 | 271.1 | 270.5
1.0 | 293.0 | 293.7 | 288.0 | 289.7 | 270.0 | 268.7
1.5 | 290.5| 290.5 | 285.5 | 287.6 | 268.6 | 267.0
2.0 |288.0 | 287.7 | 283.0 | 2852 | 267.0 | 265.2
2.5 | 2856 | 286.0 | 280.6 | 282.2 | 265.3 | 263.8
3.0 |283.0| 283.7 | 278.0 | 279.2 | 263.0 | 261.7
3.5 | 280.0 | .280.4 | 275.0 | 276.2 | 260.0 | 258.7
40 |277.0| 277.0 | 2720 | 2732 | 257.0 | 255.7
4.5 |2739| 273.6 | 269.0 | 270.2 | 254.1 | 252.7
50 |271.0| 270.3 | 266.0 | 267.2 | 251.0 | 249.7
55 | 2688 | 2669 | 263.1 | 264.3 | 247.5 | 246.7
6.0 | 266.0| 263.6 | 260.0 | 261.2 | 244.0 | 243.7
6.5 | 2625 | 260.3 | 256.5 | 258.0 | 240.4 | 240.7
7.0 | 259.0 | 257.0 | 253.0 | 254.7 | 237.0 | 237.7
7.5 | 255.5| 253.6 | 2495 | 2514 | 234.1 | 2347
8.0 |252.0| 250.3 | 246.0 | 248.2 | 231.0 | 231.7
85 | 2485 | 2469 | 2424 | 2449 | 227.1 | 228.7
9.0 |245.0| 2436 | 239.0 | 241.7 | 224.0 | 225.7
9.5 |241.6| 2403 | 2359 | 2385 |221.9 | 2220
10.0 | 2380 237.0 | 233.0 | 235.3 | 220.0 | 219.7
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1.2. Intercomparision of models of the atmospheric turbulence spectrum

This part deals with the theoretical and experimental studies of optical
waves aimed at comparing different models of the atmospheric turbulence
spectra. For inhomogeneous optical paths in the atmosphere we introduced the
term turbulence spectrum averaged over the path

In our Ref 7 several models of the fluctuations spectral density of
refraction index ®,(k, x) of atmosphere were analyzed. It is well known that the
following models, describing the behavior of the fluctuations spectral density of
the refraction index of the atmosphere in the region adjacent to the energy range,
are most widely used:

= von Karman model /1,2/
@, (x, &) = 0,033CH (E) L5k (1 + k2 L5, ) V6 ; (1.13)
— exponential model /7/

D, (x,8) = 00333 @)1 - expl-? / ]} (1.14)

— Greenwood—Tarazino model /9/

®,(x,8) = 0033C2 (&) (x* LG +x Ly ) "V/6. (1.15)
Naturally, in these models (1.13)—(1.15) the outer scales L;g . ICE_]J}, and Ly, are

somewhat differ. Here C ,‘E(E,} is the density of turbulent fluctuations.

Let us perform the comparison of models (1.13)—(1.15) on the basis of the
calculation of the variance of the phase fluctuations of optical waves, propagating
though the atmospheric layer adjacent to the Earth. Let us use the equation,
describing the phase fluctuations S(p) of the optical wave. propagating through
the turbulent atmosphere according to the approximation of smooth

perturbations /2/:

L 2
S(p) = kI ri\‘” d’n(%, x) CDS% exp(1€py), (1.16)
0




20

where £ is radiation wave number ( y= 1 for the plane wave, y= k/L for the

spherical wave), L is the length of the optical path. It is not difficult to show
that for the fluctuations /2/

< d*n(x%y, x) )d>n(ky, x3) >=

(1.17)
= 218(X) — %3)8(% | + R2)P, (R . x))d*% 1d*% ydx,dxs
the variance of phase fluctuations in the plane wave is following /5/
< 82 5= 2222 jdzjdnco (x, &) 1 + cos K2 (L - —8) |, (1.18)
0 0 oK

Under the condition r:ﬁi. / k << 1, where x;' is the specific value of outer scale
of the turbulence, Eq. (1.18) transforms into

L w
<52 5= 4::3;':2]'4&[:1“@,,{::,@). (1.19)
0 L]

Let us compare the variances of phase fluctuations for madeL'-‘.{l.l3)—{l.15j
along the homogeneous path. For the models (1.13), (1.14), and (1.15),

respectively, we have

< 82 5= (12 / 5)=*0,033k°CILLY (1.20)

(at L;}; <<¥K,, where «x, is the wave number for the inner scale of

turbulence),
< 8% 55~ (12 /57200331 (1 / )k’ Cr L) (1.21)
2 2 ra/6)IrG/3) 202 5/3 o
~ 4220,033 CELE 1.22
R R /) (2

From the condition of variances equality
< 8% >p=< 82 5o=c 8% 5,
for all models (1.13)—(1.15). we obtain the relationships between the scales:
Log =~ 027 Lyx .x ok =036Log , %ok =1,33Lyg. (1.23)
Thus. the calculations of the optical characteristics performed using one model of

the spectrum can be result in another model by relationship (1.23).
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Calculating the variance of star image jitters in the focal plane of telescope,
we use the following simplifying assumptions: the amplitude fluctuations in the
optical wave are small, the telescope aperture is assumed to be as a Gaussian.

Then (see Ref. 8) the variance of image jitter will be

i
ca(R) = 1670033F [ deC7 (2) »
0

(1.24)

X

’ jm;ﬁ”{l —exp(—x2 / k3, }} exp(-xR? / 2)
0

for model (1.14). Here R is the effective size of a telescope Gaussian aperture.

In Eq. (1.24) the simple calculations lead to
L
o2 (R) = 87221/60,0337r() /6}F3R“”"Iatg(;'§{ﬁ){l _(+ zxﬁaﬂh--'fﬁ}. (1.25)
0

The further calculations require the real profiles of the dependencies of models
parameter Cp(£) and xorl(€)-
For von Karman model (1.13) of turbulence spectrum in Ref. 10 the

calculation of the variance of the image jitters for the circular telescope aperture

was made

2R :
52 (R) = (nk*R?) j' dpD[D;{p} + M} X
0

P (1.26)

« farccos(p / 2R) = (o / 2R - v/ 2R7}.

where Dg(p) is the phase structural function; 2R is the diameter of receiving

aperture. In the field of applicability of the technique of smooth perturbations

the phase structural function were substituted for the structural function of

complex phase, therefore

L e
Dite) + P52 = 5%k [ [ choc o pIPu(5.2) (1.27)

0 0
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Moreover, the function characterizing the averaging effect of the circular aperture

in Eq. (1.26), is approximate /11/ using power function
(arccos x — xVl —x%) = (x / 2)[1 -1.25x + &25::4].

The calculation results of arrival angles by (1.26) for homogeneous path are given
on Fig. 1.5, curve 1. Here the dependence R, corresponding to Kolmogorov's

turbulence spectrum is presented (curve 1)
o2(2R) = 284C2LQRR) . (1.28)
Comparing curves 1 and 2 one can find, that the finiteness of the value of outer

scale of turbulence, taken into account, leads to higher rate of decrease of the

image jitters variance with the increase of receiving aperture diameter (at
2R > (l.[x{",l). This is compared with the results of Eq. (1.28) as applied to the
case 2Rx; <1 (so doing curves 1 and 2 are identical).

Eq. (1.253) can be used to calculate the image jitters variance along
inhomogeneous path, if the corresponding altitude profiles C,‘E[E’,) and xal(s_,) are
applhed.

The experimental test of aperture dependence of star image jitters formed
by telescope is carried out /12/ as a part of the complicated measurements of
stellar climate in the location of Russian Large Telescope (LTA) in north
Caucasus. The image jitter is measured in experiments /12/ using photoelectron
provision with diameter of main mirror 605 mm. located in the telescope focal
plane. The changing of aperture is realized by superposition of nontrans parent
ring diaphragms of different diameters.

On the design features of the used telescope is the shadowing of the central
part of the mirror. In practice it should be dealt with the telescope having the
aperture in the form of the ring with the diameter of the shadowed part

Dy = 115 mm. Earlier /13/ the variance of star image jitters was calculated for
telescope having the ring aperture with an external diameter D] and internal
diameter Dy. It was shown that in the power region of aperture dependence of

image jitters variance we have
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o5 (R) = 5691 (mD3" [ deCF (), (1.29)
0

where n = D/ Ds,

4n
(1 +n

)
fm)=0-my21+n3 2152 __ F(1/63/23 (.
{ “'FH}UJE l( { f }2] (1 3{]]‘

Here the function fin) describes the influence of the shadowing of the central part
of the telescope and gives the guantitative overestimation of image jitters variance
for the telescope with the ring aperture compared with the circular tetesccpi:.
Some values of the function fln) are presented in the Table 1.10. It is not
difficult to see that the function fin) considerably differs from unity only with

noticeable shadowing (more than 50% of the surface).

Table 1.10

n 0 |05 0.75 0.8 0.9 0.95
fny |1 1,08 |[1,37 |1,67 [4,33 |1517

These results describing the influence of the shadowing of the central part of

telescope were used to correct the measured data /7/.
Two sets of experiments (obtained at the different values of atmospheric

turbulence) on aperture dependence ai{R) at the external diameters of the

telescope of 152, 215, 313, 492, and 605 mm. The internal diameter of the ring
aperture of telescope was constant and equals to 115 mm. The measured date
are presented in relative units, here the power dependence R 1/3 was given the
comparison. As was shown earlier theoretically the measured data on jitters
variance are considerably deviated from the dependence R~ I/3. This confirms the
conclusion (from the comparison Fig. 1.4 and 1.5) about the influence of the
finiteness of outer turbulence scale. Seemly it should be profitable to relate the

optical measured data with the calculational results on the basis of models.
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At present the major quantity of the models of the altitude dependence of

the structural parameter of refraction index C ;E{f:) and the altitude dependence of

outer scale of turbulence Lg(h) is known. The altitude models of C,‘-f{!:) are

sufficiently numerous /1, 2, 4, 6, 8, 9, 14, 15/, therefore we consider here only
two of them. The first is the model proposed in Ref. 10 describing so—called the

L) L1}

"best", "average”, and "worst" conditions for optical observations. It is of interest

the model describing the propagation of visible radiation at the optical range at
might /11/.

Thus. the star image jitter is calculated on the basis of this equation for the
case of the propagation to the zenth direction. It is seen from the analysis of
Eq. (1.25) that all the features of inhomogeneous optical path will be described

by the behavior of the function

H ’ = s 16
Id&,(‘;(ﬁ}[t + ZxﬁR_“]
Ho
f[R!Hﬂi‘H]z . H — F (L31}
[a=Caz)
Ho
Thus, for inhomogeneous path
-1/6
F(R Ho. H) = f(R)=[1+2:3R] ik (1.32)

If the telescope aperture R << kg ! then
f(R. Hy,H)=1. (1.33)

To introduce the term of the outer scale KE.{IW averaged over optical path, we
attempt to approximate the last formula using trial-and-error method:

f(R. Hﬂ,H]=f[R}E[l+2xﬁm.R“2]_U6. (1.33)
Our calculations show, that "averaged” over the entire vertical column of the
atmosphere from at Hy =0 to H = 20000 m, xﬁé.,, =0.5m for the «best»

; - e
conditions in the atmosphere according to Gurvich (Ref. 15), and xgg = 1.0 m

for the "worst” conditions in the atmosphere. Model (1.7) of the outer scale of
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turbulence is used. [t is of interest to note that the results for model (1.8) are the
same.

It should be noted that our results agree with the data in Ref. 6. This
demonstrates that the behavior of the turbulence spectrum in the region of low
frequencies is well described by models (1.13)—(1.15). The parameters C; and
ki! of these models, in its turn, are described on the basis of empirical altitude
dependence. To calculate the characteristics of the optical waves propagating

through the atmosphere, one can introduce the average integral spectrum

[ e, (x,8) = 0,025k 27 ¥/ 3{1 - exp(-x? / xﬁm.)} . (1.35)
0

where ry i1s Fried radius.
Because of the considerable growth /4/ of the inner scale /y of the turbulence

with increase of the altitude (/, = ¥h) and the finiteness of the out scale of the

turbulence, one can expect the essential decrease of inertial range of sizes of
atmospheric turbulent inhomogeneities at high altitudes 2 (A > 5000 m). In its
turn. this can change some reguliarities of description of optical waves
fluctuations. In particular, this is of importance for the estimation of the

operation efficiency of adaptive systems in atmosphere /16 - 18/.
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FIG. 1.4. Aperture dependence of fluctuations dispersion of incident angles of optical
wave at homogeneous path: calculation for Kolmogorov's turbulence spectrum ),
and caleulation for model (1.13) at kg = Ll (11).
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FIG. 1.5. Experimental check of aperture dependence of dispersion of star image
tremor in telescope focal plane at diameter of 605 mm: e, o — measured data at
different values of turbulence, x — dependence corresponding fo turbulence spectrum
at infinitive external scale.
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1.3. Effective outer scale of atmospheric turbulence

We discuss here some possibilities of introducing the distortions of an
optical wave phase, propagating along vertical atmospheric path, as an integral
characteristic, describing the turbulence along the path. Several models of the
turbulence outer scale profile have been analyzed as well as the structural
characteristic of the atmospheric refractive index fluctuations in*order to find the
value of the efficient outer scale.

The work on design of a large telescope requires the knowledge of its
predictable characteristics including the information about parameters of a model
/1, 18/ of altitude profiles of atmospheric turbulence such as turbulence intensity
and the outer turbulence scale in the planned location of the telescope. These
characteristics are the point spread function (PSF) and the efficient angular
resolution.

One of the traditional ways to estimate the angular resolution of a designed
telescope is to measure the parameters of the image (long-exposition PSF)
obtained on a telescope of small diameter. However, the turbulent PSF of a
small telescope will correspond to the PSF of a larger telescope if only the outer
turbulence scale considerably exceeds the dimension of the telescope diameter in
both cases. According to some experimental works /17, 19/ performed in
different observatories throughout the world in recent years, this condition is
broken for modern projects of telescopes with aperture dimensions of the order of
8—10 m (VLT 4x8 m, Keck 2x10). Saying about the outer scale one should keep
in mind that this parameter changes with the height, i.e., it is necessary to use
the information about measured parameters of the model of height profiles of
atmospheric turbulence.

The possibility to introduce an efficient outer scale as an integral
characteristic of turbulence is of great interest as it can permit one to change the
height profile for the outer scale. One of the reasons to introduce this parameter
is that the applicability of the models of height profiles of atmospheric turbulence

is restricted due to their dependence on geographical location. It will also permit
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one to simplify mathematical calculations connected with the account for
influence of the atmospheric turbulence on the phase of optical waves.

We propose two methods for determining the effective outer scale, namely,
by the discrepancy between structure functions of phase fluctuations and by the
saturation level.

Determination by the discrepancy

To determine the effective outer scale by this model, minimization of the

integral square discrepancy of structure functions of phase fluctuations

Mmax

MLa)= | [Delps La) = Dol Lo(A)] o (1.36)

is used. Here Dy(r, Lg(h)) is the structure function corresponding to the height
profile of the outer scale Lg(h), Dy(r, Ly) is the function corresponding to the
constant value of the outer scale [y. The variable p,,,, depends on the studied
range (Fig. 1.6) and has a value of either 10 m (what corresponds to the largest
diameter of existing telescopes) or Arg(90%), i.e., the argument at which the
structure function reaches 90% of the saturation level.

The structure function was calculated by modified von Karman spectrum
of atmospheric turbulence ®,(x. &) = 0.333 Coe)(x2 + LG (2))"11/6, where & is
the current coordinate along the propagation path: for the case of a vertical path,
E=h where h is the height over the underlying surface.

The discrepancy introduced in such a way defines the divergence degree for
two structure functions. The value of the outer scale L at which the discrepancy
A(Lg) is minimal will be called the effective outer scale of atmospheric
turbulence.

Determination by the Saturation Level
The name of the method is directly derived from the fact that the value of

argument at which the structure function saturates is taken as the upper boundary

of the range studied

i
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/5

Ly(h) = F L3(h)C3(h)dh / T C;(h)dh (1.37)
0 0

The results presented below indicate that the method is close to the
determination by discrepancy [0...Arg(90%)] in its characteristics.
Comparison of the Results

We shall only comment the results of applying the method [0...10 m] to the
profile (C) since other methods and profiles have qualitatively similar results.
Figure 1.7 presents the graph of the structure function corresponding to the
profile Ly(#) — C together with the family of structure functions calculated using
some constant values of the outer scale. One can assume that there exists certain
value L} at which the functions Dy(p. L§) and Dy(p, Lo(h) — C) are most close.
Figure 1.8 demonstrates that this assumption is true, namely, the minimum
corresponding to the value L§ = 32.5 m is shown by the dashed line. Comparing
the curves D(r, Lo(h) — €) and D(r, L§ =325 m) in Fig. 1.9, we see their
similarity indicating the efficiency of the method for the profile Ly(h) — C.
The results of calculation of L{(in meters) by the above-mentioned methods for
different models of Lo(h) and Ca(h) are presented in Tables 1.11 and 1.12.

Comparison of the methods

Analysis of the value L{j obtained by different methods for the same height profile
Lo(h) demonstrates that its growth (ie., L [0...10 m] << L3[0...Arg(90%)] < L§
[0...2c]) is caused by the necessity to compensate for increasing influence of the
D,(r) portions at large argument values with the increase of pmax (i.€,
B [0-..10 m] €< ppax [0.-A12(90%)] < pmax [0...0]).

To reduce the increased discrepancy. i.e., to reduce the area between two
structure functions, it is necessary “to lift” the structure function D,(r, L*,p) to
the structure function D,(r. Ly(h)). And Fig. 1.7 demonstrates that the “lift” of

D,(p. L§) occurs with the increase of the value L3.
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Comparison by the models of Ci(h) used

Studying the dependence of the value L on the model of Cﬁ{h) one can
say that lower value of L{ for the “best” vision conditions is caused by essential
distinctions in the behavior of C,‘";[h}. As one can see in Fig. 1.1, that the “best”
profile Ca(h) rapidly falls off with the growth of height, and the probability of
appearance of large-scale fluctuations diminishes. This leads to the decrease of
the structure function and L{.

Comparison by the models of Lo( H) used

The considerable difference between the value L for the models Lg(h) — C and
Lo(h) — D can be explained by the following reasoning. The characteristic
property of the model Ly(h) — D is the presence of a finite maximal value of Ly
followed by its decrease at heights above 7—8 km (see Fig.1.2), so the appearance
of larger scales is impossible. At the same time, the growth of Ly with the height
is inherent in the model Lg(h) — C what increases the influence of large-scale
fluctuations and, consequently, one can expect the growth of D,(p) what finally
leads to the increase of L.

In the final analysis one can arrive at the following conclusions.
|. One can introduce the effective outer scale of turbulence as an integral
parameter describing the character of atmospheric turbulence along the whole
propagation path.
2. Introduction of the effective outer scale can considerably simplify
mathematical calculations connected with the account for the influence of
atmospheric turbulence on the phase of optical wave propagated along vertical
atmospheric paths.
3. The description accuracy studied demonstrate that the error caused by the
change of the height profile of the outer scale for a constant value, i.e., the
effective outer scale. considerably varies depending both on the model of a

parameter profile and the method of determination.
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Table 1.11 Table 1.12
Ci(h} — the worst C:(}r) — the worst

Model Method Model Method

Lo(h) [0...10 m|0...Arg(90%)| 0. Lo(h) [0...10 m[0...Arg(90%)| 0.
(B) | 34.7 50.6 58.4 (B) | 554 88.5 98.0
() | 325 39.9 429 () | 406 493 523
() | 060 0.66 0.71 (D) | 1.04 113 1.78
(F) | 068 0.75 0.84 () | 131 1.46 1.56

00 400

FIG. 1.6. Variants of introducing ppay.
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FIG. 1.7 The structure function for the profile (C) and the family of structure functions

caleulated for fixed values of Lo




FIG. 1.9. The structure function for the profile Lo(h) — C and for the corresponding effective

external scale L_#.
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CHAPTER II. MATHEMATICAL SIMULATION OF LASER BEAM
PROPAGATION IN THE ATMOSPHERE

2.1. Problem of coherent radiation propagation

[n the problems of coherent beams propagation as well as in the problems of
imaging in randomly inhomogeneous medium the wave equation for
electromagnetic field of an optics wave is the base for a mathematical model. In
the problems considered here polarization effects are negligible and the ratio of a
path length to the radius of an aperture is taken so that for a scalar field
amplitude it is possible to use small angle approximation (approximation of

paraxial beams) /1, 2, 3/.
Wave equation

Let us introduce a slow varying component E(p,z,7) of electromagnetic

field complex amplitude in the following way
0E(p, z.t) = EE(p, z.t)explikz—iot), (2.1)

so intensity 7 is related with the component E(p,z,7) as

EE =1, (2.2)
here ¢ is the speed of light in vacuum, ng is the index of refraction for a
medium, 2 is vector of polarization, k =2z / A is wave number, o is frequency
of electromagnetic oscillations, p=(x,y) IS vector of coordinates in a beam

cross-section (the beam is directed along OZ axis), ! is a time variable.
In paraxial approximation propagation of a monochromatic linearly
polarized beam in diclectrically inhomogeneous nonmagnetic medium is

described by parabolic equation for complex amplitude £

21 25 =[ 2 & ok%nlE, (2.3)
Erd ax- oy’
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in assumption that deviations of the index of refraction from unity are small, i.e.,
ng=lLén=n-1<<l1. (2.4)
Algorithms based on finite-difference methods were used to solve the
parabolic equation /4/. But nowadays the common method of solution in
domain of space frequencies of the complex amplitude E is the splitting algorithm
applied together with Discrete Fourier Transform (DFT).
Solution to parabolic equation (2.3) corresponding to propagation of the

wave from the plane z; to plane z;.; can be written in an operator form /5/

b "

;
E{x.}-"i;.,}=cxp{ 57 kﬁ'? + 2k Iﬁnd*J Elz,). (2.5)

This equation can be approximated by a symmetrized split operator
E{x._m z.-'-—l) = f)[% ﬁE)R(Z;.. Z_ul)ﬁ(% ﬁ{}f{{;}l + G[I\Zz},

; Tl (2.6)
D(Az) = cxp{— r—L;&z’E‘ ) R[;,zml} = exp(—ik Iﬁudz]

I
Operator R describes here refraction on inhomogeneities of the index of
refraction and operator D corresponds to the solution of the problem of free
diffraction. The second order of accuracy for this approximation was proved
analytically /5,6/ and confirmed by numerical experiments /7/.

For optical waves the problem of free diffraction on a distance z can be
solved using the representation for complex amplitude in the form of a finite
Fourier series /3/

E(x,y.2) = Z ZEM[ exp[—— m +_}rn]:‘ (2.7)
m=—N/2+1n=-N/2+1

where
. LL Vo
Ennl(2) PR TS “-dtdyff{x. ¥, z)exp[- i I{m + yn}) (2.8)
00

are coefficients of the series, L is a size of the domain of expansion, N is the

number of members in the series. It is also assumed that spectrum of space
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frequencies for function E(x,z.r) is finite and the function itself is periodic or
can be supplemented to a periodic function. In the case of numerical simulation
a continuous field E(x,z.t) is replaced by a discrete field defined in nodes of a
calculational grid. Transition from the domain of the original function to the
spectral space is performed by the Discrete Fourier Transform. Substituting the

spectral representation into the parabolic equation we obtain

., OF 47
2ik ”ajm- = ; m? + 1% )Epy (2.9)

with the following exact solution

Epn(2) = Epn(z = ﬂ)ﬂ?(p[ ;“'%(,n2+,12)]_ (2.10)

ik

To solve the problem of refraction in a layer Az we need to obtain the
numerical representation for inhomogeneties dn(p, ) of the index of refraction.

Refraction is described as beam transition through a phase screen

o I

Rz 1) =™ p]——kfan(p 2)dz. @.11)

Mathematical model of the index of refraction inhumog.f:neties depends on the
process due to that they appear. Here we consider two effects: random

fluctuations induced by the atmosphere and low threshold physical effect known

as thermal blooming.

Thermal blooming of high-power laser beams

A scale of varations for induced thermal inhomogeneties in a channel of
propagation of a high-power laser beam is comparable with a diffraction length of
the beam. In interval Az an expression for a phase screen can be approximated

by the product of a step length and the index of refraction distribution in the
middle of interval [z: 2 + Az)

m,(ﬁ) = KAZ - H(f). 7 + %.ﬁ:) - O{&zl) : (2.12)
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From the above it follows that we have only to obtain perturbations of the index
of refraction in some planes positions of which are determined by the scheme of
the splitting algorithm.

Heating of the medium due to absorption of radiation energy induces
variations of its density that leads to decrease of the index of refraction related
with density by the following law

én = Kp, (2.13)
where K is a constant equal to 2/3 of polarization factor of a molecule or an
atom of a gas.

In isobaric approximation density of a medium is explicitly related with
temperature by the equation of the gas state so variations of the index of

refraction can be expressed through temperature variations
En:?—;[?'—?]})=ﬂi—a?', (2.14)
)

Isobaric approximation is valid for the normal atmospheric conditions.
Exceptions are the following: (1) fast slewing of a cw high-power beam when the
speed of the beam relatively to the medium is greater than the speed of sound
and (2) when a pulse duration is comparable with acoustic time T4

Tg=Te= ﬂf.{?‘,‘. 3 (215}

P
where a is the size of the beam, ¢, is the speed of sound.

When the isobaric approximation is valid, distribution of the index of
refraction in the beam cross-section is determined by balance of heat which is
described by the equation of heat transport for the temperature field T(x,y.2)

Ol T eqp, T =21, (2.16)

ot pﬂC P
where V|, = (I‘-"x. V}) is a transverse component of relative velocity of the beam, x

is heat conductivity, p. is specific density of the medium, a is an absorption

coeflicient, and Cp is specific heat at constant pressure.
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When the isobaric approximation becomes invalid, variations of the
medium density are described by linearized equations of hydrodynamics, which
follow from the law of continuity and by the law of impetus and energy

conservation /3.8/

. d' =8 a
@ e Seade iy
dVl
n— ==V, -
o0 2= v, 2.18)
d ¢ D
E(PI ‘fxl‘-‘l) = {‘f ~l)al. (2.19)

These equation are valid in the case of small perturbations of density p;, pressure
p1, and local speed of the medium flow v relatively to unperturbed values of the
corresponding parameters. By eliminating the variables describing perturbation of
speed and pressure Egs. (2.17) - (2.19) can be transformed to the following

equation which describes perturbations of density

d? 1.2 |dp 2
L _etv | = (y - 1)Vl 2.20
[drz % } dt (v =)o s
For steady-state conditions this equation takes the form
2 =2 ==
-d—2+[I—M"-) = apy _ (¥ - l)uvlf, (2.21)
dy ax” | ox ceV

where M=v/c, is Mach’s number, y= Cp/ Cy is a ratio of specific heat

capacities.
When the speed of medium flow is small (M << 1) equation (2.21)

transforms to the equation written in the isobaric approximation

@J’-"_‘;)_a;_ (2.22)

cxX Ve

Solution of this equation yields results equal to that of Eq. (2.16) with v, = 0 and
=tk
So the mathematical model of thermal blooming of high-power coherent

laser beams in low-absorbing medium includes parabolic equation for a scalar
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complex amplitude (2.3) and corresponding material equation describing
variations of density and temperature and defining distribution of the index of

refraction in the channel of propagation.

~ 2 3
21k 25 - ["—2 A Ekzﬁn]E

&z a2 9 (2.23)
M(on) = al,

where operator M describes the relation between induced optical inhomogeneties
and absorbed energy al.

As an example of the mathematical model implementation let us consider
the results of thermal blooming simulation computed for a Gaussian beam
crossing a thin layer L of nonlinear medium (a nonlinear phase screen). In the
example under consideration approximation of nonlinear phase screen means that
thickness L of the layer is much less than a focus length and diffraction length
Ls=kay? of a beam and that attenuation is small (el <<1).

In Fig. 2.1 dynamic of thermal blooming under conditiohs of forced
convection is illustrated for speed of convective flow much less than the speed of
sound (isobaric approximation, Eq. (2.16)) and for heat conductivity ¥=0. In this

case the sole parameter of the problem is integer nonlinearity of a layer

& agl| S gEETn - .
f p?'.“p UVIHHi"L, Iy is initial intensity of the beam. When transient processes

end, the phase screen can be described as an integral of normalized beam

Py =

intensity

o(x,y) = Py T I{e,y)/1ydc = Py Tcxp(— g2 = yz]dg 1 (2.24)

-0

As distance x decreases. the value of phase o at the OX axis approaches \Frx Py=
1.77Py. In calculations the value of Py parameter was taken equal to 10, that
correspond to maximum phase increase at the path (17.7 rad or 2,8%). For such
nonlinear distortions the steady-state maximum value of intensity in the focus

decrease more than ten times. In Fig. 2.1 two examples are presented that differ
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by direction of wind velocity. For each moment of time 2D distribution of phase
distortions in the plane of transmitting aperture is shown as well as distribution of
intensity in the focal plane, the beam was Gaussian. In the first case wind was
directed along the coordinate axis, in the second case the angle between them
was 4359,

Numbers in half-tones pictures show maximum and minimum values of the
function. It is seen that the assessment of phase distortions presented above for
steady-state regime (17.7 rad) are in good agreement with the results obtained in
numerical experiments (16.9 and 16.0 rad). Difference of 5 to 10% can be
attributed to errors of numerical model and to the fact that transient process
does not end completely.

Calculations were performed by monotonic conservative procedure with
approximation of second order, differences were taken against the flow /9/, a
model viscosity (heat conductivity) was compensated according to Samarsky
algorithm /10/. This method has the advantage to define arbitrary direction of
wind velocity in the problem of heat transport. The scheme is stable for small as
well as for large intervals of temporal discretization. The problem can also be
solved when the wind velocity depends on transverse coordinates (x, y).

Another situation arises with beam slewing. In this case speed of beam
transition relatively to medium can be close or even greater than the speed of
sound. In Fig. 2.2 perturbations of density is shown for a regime of forced
convection with a speed of the flow close to that of sound (Eq. 2.21). Parameter
Py was taken two times less than in the previous example. In isobaric
approximation this corresponds to maximum increment of phase on the path
(8.8 rad). It is seen that for Mach = 0.5 - 0.7 the results do not differ much, for
further increase of M (M approaches unity) phase distortions increase sharply.
For M greater than unity we obtain a solution approximately equal to the results
of isobaric approximation, but two times greater. [t can also be shown

analytically that for M approaches infinity this conclusion is fulfilled precisely.
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Turbulent distortions of wavefront

Under conditions of turbulent fluctuations longitudinal scale of the index of
refraction variations is of the same order as the inner scale of turbulence /; which
is usually less than the step of discretization Az In this case integration of the
index of refraction inhomogeneties along coordinate z should be performed
analytically. Because of the statistical method employed to define turbulent

fluctuations &n(p, z). in result of integration we obtain expressions describing

statistical characteristics, for example, a correlation function of phase fluctuations

AZAZ
Bo(p) = (of7 +p)olF)) = k2 [ [ dzdz"(n(F + 5.2 + 2)n(F. 2 +27)). (2.25)
00

Corresponding spectral density F, obtained by the authors of Ref. 5 for von

Karman spectrum of turbulence is of the form

F (x)= 2::&2.&@,,(.:_!,1-;: = ﬂ,lﬂ) . K[K‘%] (2.26)

P

where @, is 3D spectral density of the index of refraction fluctuations, Ly is the
outer scale. K is a correction function which approaches unity at small values of
the second argument, which corresponds to Markov approximation.

In problems where high-power laser beams propagation is considered in a
randomly inhomogeneous medium, thermal distortions of beams induced by
heating of the medium should be allowed for along with turbulent fluctuations.
Within a step of integration over the longitudinal coordinate, turbulent and

thermal distortions can be considered as additive. i.e.,

Tid
olp.1) =k jﬁﬂ(ﬁ, z,t)dz = 91(p.1) + 02(p. 1) (2.27)
if
where «; is nonlinear and ¢ is turbulent distortions.
Thus simulating numerically by the splitting algorithm a beam propagation
in a randomly inhomogeneous medium, realizations of random phase screens

should be generated according to the statistics chosen. Simulation of random
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processes is a special branch of computational mathematics. application of its
methods to the problem of calculation of beam turbulent distortions will be
considered further. Here we consider only some problems, such as the choice of
a step of discretizationin over lenghtwise coordinate Ap and choice of the size of
a sample.

Whether the technique of numeric experiment is possible to employ is
determined mainly by the possibility of representation of an optical wave complex
amplitude as a discrete function. According to the laws of computational
mathematics this condition limits the spatial width of spectrum xp, of a
function

Kmax < 1/Ap . (2.28)
A spectrum bandwidth can be estimated using the well-known fact that an
angular size of a point object image W seen through the turbulent atmosphere is

approximately equal to the ratio of wave length 4 to a length of coherence r
W=y, ro° =0423k%[Chdz . (2.29)

A lens can be viewed as a simple system of image forming that performs Fourier
transform of an incident field, so the size W corresponds to the bandwidth of
spectrum, i.e., kmax~ W/A. The attention should be paid to the fact that the ratio
/ry correspond to FWHM of an image. A radius of a circle within which falls
95% of energy is three times greater. For a plane wave crossed a layer of
atfnospheric turbulence a bandwidth of spectrum can be estimated as

Kmax = WA =3n. (2.30)

This leads to the following restrictions of discretization step

Ap < %ru. (2.31)
Another restriction appears because small scale turbulent distortions with space
frequencies x > kmay can be lost at discretization. Violation of this condition
leads to an error approximately equal to the integral over the corresponding
spectral interval. Let us impose a limit on this value corresponding to the

criterion «A/10»




44

o2 =2n IFm{x}lcdx =25 x ﬂ.439rﬂ_5 3 ."K"Hjtﬁ(
X max K max

= 048953 233 = 03(ap/m)”° < (22/10)* = 04

(2.32)

Less strict condition on the step of discretization follows from here, namely,
Ap < n.

Let us now consider demands to the size Ny, of a sample. In the problems
considered in the present report we are concerned only in the moment of the first
order, i.e., mean intensity. Variance of estimation errors for a mean value is

related with variance of fluctuations by the following formula

2 _ =
O ostm err = N *
smp

gy

(2.33)

From this equation we obtain the condition ensuring 10% mean square error of

estimation

2 2 2
Nip =l CF . 100.F (2.34)

smp — " 3 2

Casmerr  (0(I))° ()
Now we can make a priori estimation of the sample size using relative variance of
intensity fluctuations and taking into account the well known effect of intensity
fluctuation saturation. The data obtained experimentally /3/ as well as the results
of numeric experiments /3. 12, 13/ manifest that normalized variance of intensity
fluctuations almost never exceeds unity. It is true for a plane wave as well as for
close-to-axis regions and for an image plane of beams limited in space. So Nomp
= 100 should be taken for estimation of mean intensity with 10% precision on
the optical axis of a system. Less strict condition is characteristic to problems of
estimation of adaptive systems efficiency because intensity fluctuations are
lessened considerably due to correction. In calculations the results of which are
presented in the report the size of sample Ngyp = 100 allowed us to asses mean

intensity of a beam or image under correction with precision not less than 5%.
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Fig. 2.1. Thermal blooming under condition of forced convection (isobaric

approximation). Wind is directed along axis OX (a), an angle between wind and OX

axis is 45°(b).
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Fig. 2.2. Thermal blooming behind a phase screen under condition of forced

convection (steady-state solution of linearized equations of hydrodynamics).
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2.2. Generation of random 2D phase screens by Fourier transform

Let us consider simulation of stationary random process with a given
spectral density F(x). In the problems where random processes taking part

representation is used in the form of stochastic Fourier integral /14/
S(5) = [[ explip)d® H(x) (2.35)

In stationary random processes spectral components are delta-correlated and

related with spectral density by the following equation

(@ H(R)a*H' (%)) = Fs(R)8(% - &')d*xd*x’ (2.36)
Here and further the angular brackets mean averaging over an ensemble and the
asterisk signifies complex conjugation.

In numeric experiments with stationary random processes we should to

produce samples of filed S(p) discrete over space variables such that statistics and

correlation properties of discrete random processes correspond to properties of
the original continuos process. In accordance with the method of Fourier
transformation the simulated process is represented as truncated Fourier series

with coefficient which form 2D matrix of spectral counts
N2 N2

S(p) = Z ZS{*‘LH)EKP(’P‘(LH) (2.37)

-Ni2 =Nj2
Usually in numeric experiments we are interested in values of a function in,

nodes of an equidistant calculation gnid
pry =eddp+é,JAp, I.J =012...N, (2.38)

o the double sum in Eq. 2.37 can be rewritten as

N2
ZELM ﬁ}(p{l‘(! L+J- M}ﬁﬂ(ﬂ;p} {2.39}
=Nj2

S(prs)=Srs =

:a:MH

Assuming that
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o 2.40
£ N - Ap (2.40)
and changing limits of sums we obtain the standard formula of 2D Fourer
transform
N-1 N-1 _ Yni
S.;__,r = Z ZSLM CND{T{J" L+J- M}}‘ [2.4])
0 0
or an equivalent formula
N2 i N2 i
Sl = ex(iJ-M) S .p[ﬁf-f,]. 2.
IJ ;} Pl N _;} LM EXP\ (2.42)

It was shown by the authors of Refs. 15 and 16 that to obtain the given
correlation properties in realizations, coefficients of Fourier series should be

interrelated with spectral density of the given process by the following equation
-
<“5'L.Mf > = Fy(x o) Ok % g = AV L + M?, (2.43)

where Ax is an interval of discretization for a spatial frequency. A correlation
function of the obtained sequence corresponds to correlation function of a
simulated random process if correlation length of the random process and values
of correlation function argument taken into consideration are less than the size of
a region in space covered by the calculation grid. The last restriction is due to
periodicity of the sequence obtained as a result of Fourier transform.

The restrictions in choice of a probability density function of random
Fourier coefficients are quite loose. For example, the authors of Ref. 17 showed
that for counts in a spectral domain it is possible to use normal distribution as
well as uniform distribution. In the last case multidimensional characteristic

function of the obtained correlated sequence approaches multidimensional

characteristic function of Gaussian process as G(If JN } . Other authors use y’

distribution of absolute value of complex counts and uniform in interval [D, er:]

distribution of its arguments to obtain a random sample of spectral counts that is

equivalent to normal distribution of its real and imagine parts.
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Indeed, real and imagine parts of counts obtained as a results of discrete
Fourier transform applied to correlated sequence of normal random numbers are
also normally distributed random numbers. From this point of view using of a
Gaussian function is quite possible.

The main shortcoming that is characteristic to all references quoted above
is the absence of arguments on which the choice is based of function describing
the distribution of random counts. But usually the problem of obtaining a
sequence of correlated numbers is considered and not a problem of a random
process simulation. Reasons considered in Ref. 24 clearly justify that to make a
procedure more strict from mathematical point of view one should choice a
constant value of modulus and uniformly distnbuted argument in interval [0;2x].
Practically, our mathematical manipulations showed that energy in an arbitrary
small but finite interval of spectral representation of a random process does not
fluctuate disregarding the fact that a spectral amplitude of every harmonic
component is a random number as well as 1ts modulus.

The function of phase (argument) distribution for coefficients of Fourier
series can be choice arbitrary because it does not influence the spectral density.
But from statistic independence of the real and imagine part it is follows that
argumentis of Fourier series coefficients are distributed uniformly in interval
[0;2x] .

Let us consider some peculiarities that arise due to the fact that the
considered process is a real one. To obtain two phase screen as a result of
Fourier transform it is used often. One screen is in a real and the other is in an
imagine part of a retrieved array. But such approach is possible only for
statistically uniform (for example, horizontal) path. because only in this case the
both screens have the same statistics. In vertical paths intensity of turbulence, its

outer and inner scales as well as speed of phase screen transition (speed of wind)

are changed along the path.
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It is known that a real component of Fourier transform for 1D real
function is a even function of frequency (imagine component is an odd function
of frequency), i.c..

Alw) = A~ o). (2.44)
Fourier transform of 2D field has an analogous property

Alx) = A*(-%). (2.45)
Property of simmetry (2.45) relatively to operation of conjugation for a discrete
spectrum of a real function takes the form

St =S m- (2.46)
After calculation of the inner sum and row-by-row realization of Fourier
transform we obtain the matrix of counts

N2 .
= 2ni
SFar = E S ag €X { s } (2.47)
I.M g LM CXP N

with a property Sfy = S/ - It allows us to calculate the outer sum only for

non-negative values of M and in such a way to obtain two fold decrease in

number of mathematical operations.

All in all. the developed here modification of the method of spectral

samples can be viewed as the following sequence of operations

|. Definition of the first half of rows of 2D array of Fourier coefficients
according to the formula for modulus of the spectrum and for phase @apg
uniformly distributed in the interval [0; 2z]
= Fi2 2 2
Spa=F (&vz VI? + M? | - Ax - exp(i®ana ) (2.48)
L=-N2,N/2; M =0,1,...,NJ2.

2. Calculation of 1D Fourier transforms of these rows

N2 :
Stm= D SLm exp{z;;’ L-I}‘M =01.... /2. (2.49)
=
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3. Mapping of these transforms onto the second half of rows and their
conjugation
Sim =S{ M ==N/2,.. . (2.50)

4. Column-by-column Fourier transform
N2

Str= 3. Stm exp{%’”- M-J}.J =0l,...,N -1 (2.51)
-N2 N

In the frame of «frozen turbulence» hypotheses which can be formulated as

follows
S(p.1) = S(p - V1,0) (2.52)

the technique described above can readily be generalized to dynamics problems.
One property of Fourier transform is that the shift of original function is
equivalent to addition of a linear component to a phase of Fourer transform.

Taking into account this property Eq. (2.48) can be rewritten as

EL.M{T] o FLI_-;:(&K A2 M2 ] - Ak - explip pgna ) exp(imcr[VxL + V},M]); (2.53)
L=-N/2,N/2; M =0J],...,N/2

An example of a phase screen succession representing turbulent aberrations

registered with temporal intervals Ar = 2%(&;3/5*} obtained in this way is shown
in Fig. 2.3. An angle between wind velocity and the axis of abscissae is 30°. As it
is seen from this example the turbulence moves along vector of wind velocity.
Taking the direction which does not coincide with the coordinate axis it is
possible to obtain long in the time domain realization of turbulent aberrations
that do not coincide. This is possible because at every cycle along X-axis with
duration T,=(NxAp)/V, a phase screen shifts along y-axis on an interval
D=V T,. The period of exact repetition is determined by the following condition

nV,Ty =nVy (N Ap)/Vy =mN dp= nV, =

(2.54)
=mVy=>n=mV [V, =m-cg(8)

where n and m are even numbers.
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Testing of the technique was performed by comparison of integral from
phase variance within a circle after extracting one or several aberrations (N = 1,

..., 10) described by Zemnike polynomials Z;

Ay = # /\ HR d’p - [S{E-) - éa;Z;{ﬁ}J- (2.55)

with corresponding parameters obtained theoretically by Fried /18/ and Noll
/19/, Calculated values of integral variance of approximation error obtained by
averaging over 100 realizations are presented in Fig. 2.3 for 128% 128 calculation
grid. Three values of the ratio of the domain size L covered by the grid to the
aperture diameter D were taken. The values are normalized on corresponding
analytically obtained values borrowed from Ref. 19. Results are presented in table
211,

Table 2.1. Analytically obtained integral variance of errors for approximation of a

turbulent wavefront by a finite number of Zernike polynomials.

Number of polynomials N AN/ (D/ )33
1 1.03
3 0.134
6 0.0648
g 0.0525

From the curves presented in Fig. 2.3 it is seen that linear and square aberrations
are influenced considerably by the loss of space scales greater than the size of the

grid. This fact is confirmed by calculations of variance for coefficients of a
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Zernike series by which a wavefront is represented. It was assumed that the outer
scale of a turbulent spectral density is finite. Parameter A; characterizing phase
aberrations without a phase constant within the aperture (polynomial Z;) is less
considerably than corresponding theoretical value. At the same time for ratio
L/D < 8 parameters Ag and Ajg differ from theoretically obtained values not more
than 5%. For L/D > 8 difference increases slowly and approaches theoretical
limit. Parameters A3, Ag and Ay decrease with approximately the same speed that
means bad approximation of high-order polynomials. So using Fourier transform
to simulate a turbulent phase screen with power spectrum we obtain excessively
low values of tilt fluctuations (tilt corresponds to first-order polynomials /4> and
Z3) and somewhat lower values for fluctuations of quadratic aberrations. [t can be
accounted for by the fact that the method is not suitable for simulation of large
scale random inhomogeneities and the grid size L is an analog to the outer scale

of turbulence.
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t=51.0
t=61. =71.4
t=81. t=91.8

Fig. 2.3. Sequence of phase screens simulating successive turbulent aberrations

(interval between nearest screens is At =10 V< (Ap/V)).
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Fig. 2.4. Normalized on theoretical results values of Ay parameter calculated for a
power spectrum of turbulence.
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2.3. Dynamic simulation of large-scale turbulent aberrations of optical phase

As it was pointed out earlier, the method of spectral samples does not allow
one to reproduce a scales greater than the size of a calculation grid. As a result
the low spatial frequencies of a turbulent spectrum are lost that results in
underestimation of atmospheric distortions, mainly. of random refraction and
quadratic aberrations of wavefront.

It is natural to try to compensate for underestimation of these aberrations.
To do so we need to know statistics of these aberrations. after that we can sum
up two phase screens, one obtained by the method of Fourier transform and
including high and medium spatial frequencies and other including aberrations
induced by low spatial frequencies of the spectrum. This approach was
formulated firstly by the authors of Refs. 20 and 21. Here we present detailed
description of this approach generalized to the case of time-dependent problem.

Linear and quadratic aberrations coincide with first terms of Zernike series
so the theory developed for this series is possible to apply in our case, namely,
expressions for statistical characteristics of Zernike coefficients can be used
relating these statistical characteristics with a spectrum of a random process.

Let us consider wave front representation as a Zernike series within a

circular aperture with radius R

S(F) = ZH;Z;{F} (2.56)
1=0
A Zernike polynomial Z /22/ is a product of radial and azimuth components
Zy(7) = ComRE(F/R) - Vit (8). €y = 2% 2V +1 (2.57)
e e 5![(:.* +m)/2- 5]![(n —m) 2 - s]!
Vi = cos(mb), 1 =0,2,4...
Vipt =sin(m8), [ =1,3,5..
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which are characterized by a radial power n and an azimuth frequency m. A
difference # - m is an even number and m < n. Moreover, Zernike polynomials
are orthogonal within a circle, i.e.,

[[ 2i(7)- z,(F)d*r = essy.. (2.59)
rsR

A method of simulation for a random phase screen using an aberration
representation is as follows. Firstly, we generate vector of random expansion
coefficients; secondly, this vector we substitute into sum (2.56). So we need to
obtain an ensemble of random Zernike coeflicients. The simulated process is

normal with a zero mean value so coefficients
I e =
a = Wr{_jﬂsp}z,{r}d r, (2.60)

are also Gaussian with zero mean value. So to define these coefficient we only
need to calculate elements of a correlation matrix
Cppe=
:-:R)-J,,,.+[(KR) (2.61)
K
2
(xR)

=8 e 8T [{ﬁ!***l){ﬂ"ﬂ)]1 Z-(—1)*"'*""-”"h’"'*j F(x) Ll
]

This equation define correlation of coefficients for polynomials the azimuth
factors of which are equal. In other cases correlation is equal to zero.

For dynamic simulation we need also autocorrelation functions of

expansion coefficients

44 (2.62)
= 8(n+ l]T Kdi - F{x}w _

' Lok V) = (= 1)™ cos(28)d5,(x¥E)1 - a,,,ﬂ)].
0 -

Spectral density of fluctuations of coefficients a; related with a correlation

function by Wiener theorem

Wilo) = lj By(z) cos(wt)dr (2.63)
0
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Substituting Bft) taken in form 2.63 into Eq. 2.62 and calculating the integral

with respect to 1 we obtain the following equation

Wi(w) =8(n +1) T kdx - F(x) %ﬁ}’f)(ﬁvl - mz)"“z x

d [] x (] e ”s-."' cos(2m8) cos[arcsin[%._]})

K

(2.64)

which can be used to produce random temporal realizations of expansion
coeflicients.

But some difficulty arises due to correlation of coefficients in Zernike
series. The correlation matrix is not diagonal so we cannot generate coeflicients
as a statistically independent random numbers. To solve this problem we can use
expansion into Karhunen-Loeve series, correlation matrix of which is diagonal
one by definition.

But straight employment of Karhunen-Loeve expansion is problematic
because functions in this basis are lacking explicit analytical form. But where
exists a possibility to express Zemike polynomials through Karhunen-Loeve
function by orthogonalization procedure of a correlation matrix of Zernike
coefficients using general similarity transformation. Detailed description of this
procedure is given by N. Roddier in Ref. 23.

More complex problem arises in dynamic simulation. Sometimes
orthogonalization procedure of a correlation matrix is impossible here because
polynomial coefficients with different angle components are correlated.

Let us note that correlation function for coefficients of two polynomials

with equal radial and angular indexes is of the form:
Byin() =

J e 2 (x (2.65)
= ST{[H + i:l(— ])H—m : (_ ]}m : Zﬁmn ‘ljichFl:K] JL_FI;(E'};;}JZM(K VE) sin(lm&)
0

(x
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To broke correlation of these polynomials we should direct the axis of abscissae
of a basis where polynomials are defined along vector of wind velocity. For such

geometry

9 = arcrg(V, V) =0 (2.66)

and correlation is absent. This property allows one to simulate properly dynamic
of the first and second order polynomials, i.e., tip and tilt, defocusing, and
astigmatism (polynomials £, ..., Z). In this case small-scale aberrations can be
simulated by the spectral sample method.

To realize this technique we develop a procedure of calculation of
temporal spectrum for coefficients of Zernike expansion, Eq. 2.64. In Fig. 2.5 we
represent the results for polynomials of the first, second, and third orders.
Temporal samples of Zernike coeflicients were obtained according to the
technique described in the previous section for 1D case. In Fig. 2.6 examples are
presented for coeflicients corresponding to tip and tilt, defocusing, and
astigmatism. In Fig. 2.7 dynamics of a phase screen is shown which was obtained
by summing of liner and quadratic aberrations with small-scale aberrations

obtained by the method of spectral samples described in the previous section.




u‘:ll.l L

AL -
=
1=

R

Al

i Bl OE Uy B4 DS BE BY oF av |6

i3 =

Wl -

e 1

o TR L

F &) @2 B} R4 EY mA BT A AW LA

- -

w W
Hu’li u_ul
il =t o
i - W
WY - w3 -

/ s
&l | W -

¥ - =

[ - 20 P

i L o e -
BT T T T T “TrrrorroT e

G0 41 A3 Wk A 0N 0K BT e Ew LE

i e

x

Wi Gl Bl &) OF BF RE AT R AR 1N

¥

AN Bl EF AN Ed mY BA AT GE AW is

Wi
it

B AL &3 W) kX AF W6 AT B &Y LB

"
L

-

Zad

e

R OAE mD m) WS WY &M AT AR AR LD

T o

ol T

R

-

- -

EE ®) &7 &5 =4 =3 44 AT A8 AR LD

I
)

N

. Sy
: N

LS &1 w3 ED EA A3 0% &T aF ok 1w

Fig. 2.5. Fluctuation spectra of coefficient of Zernike polynomials of I, 2, and 3
orders for different values of the outer scale of turbulence. W' = W/(%cg) is a

normalized spectrum, o' = o/(3nV/R) is a normalized frequency, o3 is variance of

fluctuations corresponding to infinite outer scale, n is a radial power of a polynomial,
V is wind velocity (the wind is directed along OX axis), and R is an aperture radius.
The three subscripts correspond to the radial power, azimuth frequency, and
parameter of parity. The lower curves correspond to Lo/D=1, middle curves to Ly/D
= 3, and upper curves to Ly/D = 10.
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Fig. 2.6. Random temporal samples of coefficients for tip and tilt, defocusing, and
astigmatism. a, = a,/c,. t'=t-V/R, where o, is variance. Calculations performed

for Ly/D = 10.
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t=0.0

t=0.2

t=0.6 t=0.7

=0.8 | t=0.9

Fig. 2.7. Dynamics of a phase screen obtained by summing of liner and quadratic
aberrations with small-scale aberrations obtained by the method of spectral samples.

Time is normalized on D/V. Simulation is performed for the outer scale Ly=350%D,

}"(;:ﬂ.
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2.4. Modification of the numeric model to the case of partially coherent beams

In the above sections we considered propagation of coherent beams. But
radiation divergence for real laser sources is always greater than the diffraction
limit. This is due to the processes developed in the active medium of a laser,
deformations of a laser cavity, multimode structure of laser radiation and $o o

Formally, in boundary conditions of the wave equation we should allow for
phase and amplitude fluctuations within a transmitting aperture. In time-

dependent problems this means dependence of phase and amplitude on time

E(p, 2 =0) = \[Io(p.1) explio(p.?)). (2.67)

[n stochastic representation phase and intensity become random function of

transverse coordinates

E(p.z = 0) = | Iy(5) exp(i(p)) (2.68)
Obviously that in the both cases statistic or dynamic description of emitting
radiation is unique for every type of laser sources and even for a single laser. But
temporal scales of fluctuations of a source intensity and phase are much less
than that of the index of refraction in the atmosphere. So in our model we can

omit the details of space-time structure of partially coherent beams. Common

practice in this case is definition of boundary condition for the second order

coherence function
L (1.52) = () E”(52). (2.69)
If statistics is uniform we can introduce a coherence length in the following

manner
e ol S
(1. 82) = Maolpy. P2 ) expl— P — 52 /pﬁ), (2.70)

where I'yy corresponds to completely coherent radiation (p. = =)
D0(P1. P2) = ol Py Jup(P2) (2.71)

here uy 1s a regular component of the field.
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In the employed mathematical model the wave equation describing a field
should be solved. So in the frames of this model we need a method that allows
for propagation of a partially coherent radiation.

Let us note that partial coherence is equivalent to additional angular
divergence of a beam. Equations for an effective size a of a partially coherent

Gaussian beam propagating in the turbulent atmosphere can be written as

z 2 2 2 2
a” =ag, +az +a; +a. (2.72)

Here
a, = ag(l - z/F) (2.73)

is a size of a beam focused at a distance F in cross-section z. ap is the initial

effective radius of a Gaussian beam,

ag=-—=z-2: D =2ra, (2.74)

is cross-section of a cone with base equal to diffraction divergence 1/kag,

-

a.=— 2.75
i (2.75)
18 cross-section of a cone with base equal to divergence of partially coherent

beam,

-

= X 7
%= (2.76)

15 cross-section of a cone with base inversely proportional to the coherence
length of turbulent phase screen py. Let us note that the last formula is written
for the problem of beam propagation behind a random phase screen. For a beam
propagating in a randomly inhomogeneous medium turbulent divergence is a
function of a longitudinal coordinate Z.

So to allow for different factors influencing propagation of a beam we

should sum corresponding cross-sections. Naturally, the influence of different

factors is assumed to be independent.
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[n that follows we propose modification of numerical model for a coherent
beam propagation that allows for initial divergence of a beam. In the case of a
random phase screen the result obtained coincides precisely with the written
above analytical formula.

Let us consider the proposed modification. As carlier, the wave equation
is solved for a coherent beam. But intensity in cross-sections is calculated as
convolution of coherent radiation intensity with some function W describing

broadening of a beam induced by a partial coherence of a source
2 opes AR a
I(p.2) = |E(p,2)” @ W(p,2). (2.77)

Assuming that W is Gaussian function with width d,
2° 2
W(p,z) = ex;{— 21] = Exp[— £ k‘?‘pﬁ) ; (2.78)

solving the problem of a partially coherent beam diffraction in a vacuum we
obtain the results exactly the same as with the use of analytical formula. Indeed,
convolution of two Gaussian functions with widths a; and a; is Gaussian
function with square of width equals to the sum of squares of these two functions
widths.
exp(— P’ /af] @ exp(— pz/a‘g) = consft -exp(— pz/(;}f + a%)) : (2.79)

This formula can readily be proved by calculating convolution through Fourier
transform.

So formula (2.72) of sguares summing can be viewed as sequential
convolution in the beam cross-section of initial Gaussian intensity distribution
obtained in approximation of geometrical optics with functions describing
diffraction. partially-coherent, or turbulent divergence.

There is another possible interpretation of the problem. Let us assume that
partial coherence of a beam is due to high-frequency fluctuations of beam
direction, angle B between beam direction and axis of optical system is a random

value. When distribution of mean intensity in a beam cross-section at a distance

z from a source is
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(1(.2)) = [[ 16G-Bz. ) fB)d*B = I(.2) @ f(B/2). (2.80)
Here f {E] is 2D function of probability density of the beam random direction,

I(p, z) is intensity distribution in cross-section of unperturbed beam. The second

order coherence function is
[y B2) = TaoPrs P2 N exp(ikB.(x; — x2)))(exp(ikB, (31 - 1)) (2.81)
= To(p1s2) exp(—k 6} (py ~2)° / 2)

in assumption that the beam direction 18 2D normally distributed random
function with variance r:i.z.r in every realization and correlation between vector .....

components is absent. From the last formula it follows that the relation between

coherence length and mean square value of f is

2 2
D — .d — - — 2.32
Py kﬁﬂ an GH‘ kp‘.‘ ( }

So considering the case in which partial coherence is induced by jitters of a beam
direction we also obtained the formula in which mean intensity of partially
coherent beam is defined as convolution of diffraction limited solution of the
wave equation with a function describing additional broadening of the beam.

Let us also note that in deriving the convolution formula we did not
impose any restrictions on intensity distribution in the beam cross-section and on
the function of probability density of beam direction random wandering. So this
formula is also valid for non-Gaussian beams. More over, we did not make any
assumptions concerning phase of the filed regular component, so the equation is
also valid for description of beam propagation behind a random or nonlinear
phase screen.

All in all, propagation of high-power partially coherent laser beam is

described by the following system of equations
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f
ZER'?E = [ 822 - +2k%sn | E,
CGrd %) Gl |
M(8n) = o|E"E|® W (04, 2),
2
, = &g? (2.82)
W (5,05, 2) = exp| —— |,
norm

| E(p. 2 = 0) = uy(p).

As earlier, M is an operator describing variations of the index of refraction
induced by absorption of beam energy. u; is a regular component of the field
(pe = ). Variable o, has the meaning of angular divergence due to partial
coherence (this divergence is not necessarily induced by random fluctuations of
the beam direction). C,.., 1S a constant of normalization.

According to the splitting algorithm convolutions are calculated only in
cross-sections which correspond to coordinates of nonlinear phase screen and in
the plane of receiving aperture.

We know that to asses properly thermal blooming of a beam in a thick
layer of randomly inhomogeneous medium we need further investigation of the
proposed model. Possibly, the form of W function is dependent on a mechanism
which limits coherence length. But the general features of our approach remain if
averaging over fluctuations of the source field is performed more quickly than

variation of the index of refraction.
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2.5. Modeling the wavefront dislocations

The obijective of this part is modeling of phase during wave propagation
among atmosphere first under strong scintillation conditions. The
complication of the physical reality is manifested when the intensity variations,
also called scintillations, develop and phase dislocations or wavefront branch
cuts spring up. The wavefront dislocations disturb the processing of wavefront
sensors, since the processing is based on the assumed continuity of the phase
function. Such disturbances can be due to one dislocation only. In addition,
wavefront dislocations cause disintegration of the wavefront into separate
beams which might be uncorrelated. Moreover, the amount of energy in the
neighborhood of dislocations is limited. As a result the phase at these points

is not well characterized.

The appearance of phase dislocations of a light wave propagating through
a randomly inhomogencous medium is studied in quasimonochromatic and
parabolic approximations. To this end, the numerical model described in this
report is used. The magnitude of the wave fluctuations is characterized by
Fried's coherence radius for both weak and strong intensity fluctuations. The
order of matrix is equal to 90. Two phase screen are used for modeling both a
weak and a strong turbulence. The law of the energy conservation is carry out
with computer accuracy. Spectral density of phase fluctuations of the

Gaussian beam F, and other parameters of model is as following.

&7 5 gyl
F.H'{K) = ﬂ,439ra:3(l¢‘ + K;:) Ko™ '}%ﬂ » Lo = 1m, L = 6km, i

-3

rn=[0,423kzjcﬁ(L)dL] =005m, k=27, 2=06328um,

here L, is outer scale of turbulence, [ is the path length, « is spatial
frequency. k is wave number, C, is structural constant of refractive index, r,
is Fried's coherence radius.

As seen from Fig. 2.8.1 the phase dislocations appear at the points where

the intensity reaches its maximum. These points correspond to zeros of the
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wave function. Near these points, the phase varies spirally. Along the whole

length of boundaries between white and black fragments in Fig. 2.8.2, between
two points of dislocation formation, the phase surface undergoes discontinuity
of + 2z. Such a discontinuity cannot be removed with the use of translations
of surface fragments. The dichotomy of maximum and minimum contour
lines of the interference pattern, and appearance and disappearance of
interference bands occur at points of dislocations (Figs. 2.8.3 and 2.8.4).
Contour lines of phase cosine and sine form a radial structure in the vicinity

of dislocation points and converge to them (Figs. 2.8.5 and 2.8.6).

We have performed numerical experiment to compare the behavior of
wave function scintillations and angular spectrum with_the number of phase
dislocations appearing with increase in turbulence intensity. The presence of
dislocation is determined through calculation of phase different between
neighboring points arranged in a closed contour drawn around the point of
phase function under analysis. Dislocation occurred if the phase gradient is
> 2nor <— 2. The phase is calculated as inverse tangent of the ratio between
imaginary and real components of the wave function. We normalized the
number of dislocations to the ratio between the number of counts of
calculation grid to the number of counts in a circle where a dislocation is
determined. The wave scintillation index is calculated as a normalized
variance of wave intensity, while the angular spectrum scintillation index 18
calculated as a normalized variance of the square of the modules of its Fourier
transform. We normalized the variances to the mean square of the
corresponding parameter. Estimates of all three parameters under

investigation were averaged over nine experiments.

Results of experiment are shown in Fig. 2.9 In the region of large Fried's
coherence radii that corresponds to weak turbulence, the wave scintillation
index varies linearly, dislocations are absent, and the angular spectrum
scintillation index reaches maximum values. Saturation of the wave

scintillation index and normalized number of dislocations at unity level takes
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place with increase in the turbulence intensity. The angular spectrum
scintillation index saturates at unity level as well, but the dependence is reverse

as compared with two other plots.

As one would expect, the dislocation number saturates since dislocation
density cannot be greater than unity. However, it is interesting that maximum
density of dislocations is achieved together with saturation of scintillation

indices of a wave and its angular spectrum.

It should be pointed out that the wavefront dislocations and,
correspondingly, the zeros of the wave function appear when the wave
scintillation index approaches unity, that is at the origin of the region of

strong fluctuations.

It have been performed a numerical experiment to compare between each
other the behavior of the angular spectrum width and the wavefront
dislocation number when the turbulence intensity increases from low to strong
fluctuations. Theoretically these functions must be close to one another. The
modeling shows that these curves for the Gaussian beam are differed only in
an initial values of the dislocation numbers which are not estimate in theory,
Fig. 2.10.1. For the plane wave the initial values are coincident but there iIs
not very large distinction in the curve form, Fig. 2.10.2. Probably it is caused
the alising. The fact is that a periodically continuation is modeling and there
is an interaction between periods in the plane wave case but not in the

Gaussian beam case. The addition study of alising is needed.




Fig. 2.8. Wave phase dislocations and structures created by them. Crosses
denote zeros of the intensity and corresponding points of phase dislocations: wave
intensity (1); wave phase (2); interference pattern for unit amplitude and carrier
wave perpendicular to horizontal coordinate axis (3); interference pattern for unit
amplitude and carrier wave perpendicular fo vertical coordinate axis ( 4); contour

lines of phase sine (3); and, contour lines of phase cosine (6).
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Fig. 2.9. Estimates of scintillation indices of Gaussian beam and its angular
spectrum and normalized number of wavefront dislocations. The propagation path
is 6 km long, and the wavelength is 0.6328 mm. Standard deviations are
indicated as .ﬂﬂﬂftﬂ'&nﬂf intervals. These deviations are not indicated if their

values are less than point size.
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Fig. 2.10. Estimates of normalized number of wavefront dislocations —o—
and normalized width of angular spectra —e— : of Gaussian beam (1), plane
wave (2) versus the turbulence intensity. Wavelength is equal to 0.6328 um.
Path length is 16300 m. Effective radius of Gaussian beam in the origin plane is
equal to 0.054 m. Fresnel number is equal to 1.  Standard deviations are

indicated as confidence intervals. These deviations are not indicated if their

values are less than point size. Experiment numbers is equal to 25.
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INTRODUCTION

This report is a summary of the second stage of scientific investigations
performed in accordance with contract SPC 97-4040 between Institute of
Atmospheric Optics SB RAN (IAO, Tomsk) and European Office of Aerospace
Research and Development (EDARD, London).

At the first stage of contract SPC 97-4040 estimating the efficiency of adaptive
electro-optics systems we performed an analysis of a model of a turbulent atmosphere
and considered a method of solution for the wave equation describing propagation of
optical radiation in the atmosphere.

The next problem in creation of the complete model of an adaptive system is
simulation of a reference source which 1s the key element in such systems.

The importance of investigations into the efficiency of adaptive optics systems
with an artificial reference source was understood in the end of seventies. In this
period (and even earlier) were formulated the main principles upon which the
modern concept of adaptive electro-optics systems is based. According to this
concept the reference source 1s the element with the use of which the information is
procured concerning the disiribution of fluctuations in the channel of radiation
propagation. The way in which this channel is formed influences the structure of the
whole system.

If the principle of reciprocity is the base for an adaptive system, the most
appropriate scheme is the one with an independent source of radiation generating a
beam propagating in direction opposite to the corrected beam.

Aiming at the practical realization of the systemn, the atmosphere should be
included into the loop, i.e., the backward scattering should be taken into account
with radiation reflected by an object or by inhomogeneities of the atmosphere. In
such a way an artificial (virtual) reference source is formed. In the early eighties in
adaptive astronomy artificial reference sources were named laser guide stars. The
realization of such a star is possible using Rayleigh scattering or by scattering on
atmospheric aerosol on altitudes from 8 to 20 kilometers or by induced scattering in
clouds of atomic metals (such clouds consist mainly of sodium). In the first case a
laser guide star is referred to as a Rayleigh guide star, in the second as a sodium
guide star.

The requirements to the laser source which forms a Rayleigh star are loose. On

the contrary, the requirements to the wavelength, bandwidth, and power of a laser
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source forming a sodium star are quite strict. This is due to selectivity and saturation
of absorption at induced scattering in sodium vapor at altitudes from 85 to 100 km.

The report on the second stage of contract SPC 97-4040 includes five parts.
The first part describes peculiarities of optical radiation reflected from an object, i.c.,
peculiarities of the sounding signal.
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CHAPTER 1. PECULIARITIES OF REFLECTED WAVES IN THE TURBULENT ATMOSPHERE

The interest to problems of this type arose because of demands to generate
reference radiation as a result of reflection from some objects in the atmosphere
(radiation of a beacon or a guide star). In the atmosphere light can be reflected
from inhomogeneities such as clouds or aerosol and from real objects. As an example
we have considered radiation mirror-reflected from an object. In such cases one
need to take into account peculiarities of optical parameters fluctuations of
radiation passed twice through atmospheric inhomogeneities. In adaptive algorithms
of phase control most important is the phase of reflected wave so special attention
was paid in the report to calculation of phase fluctuations.

Approximately in mid-seventies scientists and engineers working with optical
systems of seeing and beam-forming in the atmosphere and also with sounding
systems understood that the peculiarities of fluctuations of reflected waves should be
allowed for. In contradistinction to transmitting systems, in the systems of optical
sounding the effect of two-fold passing of the atmosphere is always present. Sounding
radiation passes through the same optical inhomogeneities two times: during the

direct and reverse propagation.
1.1. Enhancement of Backscattering

Scientists involved in investigations connected with atmospheric sounding
introduces such terms as effective scattering volume, monostatic optical scheme, bistatic
scheme of laser sounding and some others.

The following Russian scientists were working in the field: Yu. A. Kravtsov,
A. N. Malakhov, A.S. Gurvich, K.S. (Gochelashvily, V.1. Shishov, A.L. Saichev, V.A.
Banakh, V.A. Mironov, V.U. Zavorotny, V.I .Klyatskin, A.I. Kon, V.I. Tatarskii,
Yu.N. Barabanenkov, S.S. Kashkarov, G.Ya. Patrushev, V. P. Aksenov. M.L
Charnotskii, M.L. Belov, V.M. Orlov, [.G. Yakushkin, Z.I. Feizulin, A.G.
Vinogradov, A. B. Krupnik. L. Apresyan.

The most complete overview of the preblem was presented in Refs. 1 and 2.
These papers presents the review of the results of the effect of atmospheric refractive
index fluctuations on the propagation of optical wave when the wave traverses the
same region of the atmosphere twice. Such situation is realized at reflection of laser

beams from a target or at wave backscattering on atmospheric aerosol. In the case
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light-wave propagation properties are determined by correlations between incident
and wave traversing the same inhomogeneities in a turbulent atmosphere. This may
lead to qualitatively new properties of fluctuations as compared with forward
propagation, i.e., enchancement of backscattering of intensity fluctuations, long-
range correlations in the reflected-wave field aﬁ so on. |

The priority of Russia in the field was confirmed by the International Meeting
for Wave Propagation in Random Media «Scintillations held in USA (Seattle,
August 1992) [3].

When an object is illuminated and viewed through the same turbulence,
Prof.J.C.Dainty at al., and Prof.A.S.Gurvich, A.N.Bogaturov, V,A.Myakinin call this
"double passage imaging”. "The physical basis of double passage imaging lies in the
fact that reversable paths of illumination and viewing are coherent with one another,
regardless of the phase distortion of the turbulence, and thus double passage imaging
is closely linked to the phenomenon of "enhanced backscatter” encountered when

dense volume media and highly-sloped rough surfaces are illuminated” [4].

1.2. Phase Fluctuations for Mirror Reflected Wave

In the seventies the Soviet scientists and particularly the scientists working
with the Institute of Atmospheric Optics SB RAS were involved into investigation of
peculiarities of phase fluctuations in sounding schemes employing mirror reflectors,
i.e., fluctuations of optical waves which have passed the atmosphere twice.

The problem of location of mirror objects appeared in some practical
investigation, for example, as a part of the project of a laser range-finging with a
comer retroreflector, in problems of atmosphere sounding, laser interferometry,
registration of wind velocity by Doppler meters and so on. To my mind, the most
interesting papers concerning this problem are the publications by Smith et. al. (Refs.
6 and 7) . After these papers many other publications devoted to phase fluctuations
of mirror-reflected waves had appeared in the period from 1974 to 1980.

In the Institute of Atmospheric Optics the experimental and theoretical
investigations of the problem were began in 1976 (Refs. 10-18).

In Ref. 10 the increase (as compared with a direct wave) of phase fluctuations
for a wave mirror-reflected from an object in exactly backward direction was
demonstrated theoretically. Experimental studies carried out [11] in 1975-1976

confirmed theoretical conclusions. A little early (in 1977) have been considered
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efficiency of compensation for phase distortions. Correction of phase fluctuations was
assessed using data characterizing a reflected wave. A plane mirror with the radius
greater than the radius of a beam was used as a retroreflector.Ref. 12 published in
1977 was devoted to estimation of efficiency of correction for phase fluctuations
basing on measurements of the reflected wave phase. It was assumed that the
diameter of the retroreflector was greater than that of the beam. But the most
detailed investigation was carried out in 1980, when correlation and structure
functions were calculated (the results of investigation were published in Ref. 13).

More detailed analysis of phase fluctuations in reflected waves was performed
in 1980 and the results were published in Ref. 13. In this paper currciattcn and
structure functions of phase for optical waves were considered for a waves reflected
from a mirror.

Special attention was devoted to the phenomenon of phase fluctuation coupling.
It was pointed out that some peculiarities are specific to statistical characteristics of
phase and relevant characteristics for reflected waves [14-18]. These peculiarities
should be allowed for in problems of optical radar signal evaluation as well as in
adaptive optics systems employing algorithms with a conjugated wave. Several
experiments in real atmosphere under random beam angle motion correction have
been made in 1976-1980 [14-18].

1.3. Displacement of a Sounding Volume Image in the Turbulent Atmosphere (Ref. 2)

Fluctuations of an image center of gravity were considered in the book by
Belov M.L. and Orlov V.M [2]. The image was formed through an inhomogeneous
medium in a sounding system with the use of a focused laser beam. Particularly,
fluctuations were investigated of the image of a sounding volume. Monostatic and
bistatic schemes were considered. For imradiation of the volume focused and
collimated laser beams were used. Equations describing the variance of centroid
fluctuations were obtained for an image in the photodetector plane without any
restrictions on reflection properties of an object (pp. 84 - 95 of Ref. 2).

It was shown that for the case of strong dispersion on a surface (Lambertian
approximation) in the bistatic sounding scheme the variance of linear displacements

of the image center of gravity can be written as (p. 92 of Ref 2)
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where <pj, > is the variance of random displacements of the beam centroid in a

sounding plane (it was assumed that the beam propagates upward) and < (pf) >

is the variance of random angular displacements of an image of «secondary»
immobile source (downward propagation). So, it was shown that for the bistatic
scheme the variance of angular displacements of an image is a sum of angular
displacements of the image and of the «secondarys immobile source. If a focused
beam is used in strongly scattering medium the secondary source is, practically, a
point.

In this period calculations were performed for cases when the «secondary»
source can be treated as a point (a small scattering volume) and also for objects with
finite volumes. As an example the paper by Kalistratova and Kon can be taken where
jitter of image was considered for a thin irradiating string [Ref. 5].

So we can conclude that in the USSR in early eighties scientists understood
that in some conditions a volume could be considered as infinite small (a point
source or a «laser guide star») and that in other problems its size should be allowed
for, i.c., if an object is large enough averaging over its volume is necessary as it was
performed by Kalistratova and Kon (Ref. 3).

At the same time the authors of Ref. 2 were not able to calculate correctly
mutual correlation between fluctuations of focused beam displacements and
displacements of a image of reference sources. It was performed in 1979-1980 [Refs.
8 and 9].

Let us specify the statement of the problem. We wish to examine the mutual
correlation between the random displacements of tite cnergy center of gravity of an
optical beam that has passed through a layer of turbulent medium and the center of
gravity of some image formed by the optical system [8]. This can be an image of a
reference source (beacon) or of the optical beam reflected from a flat mirror with
infinite radius. Random displacements of the beam centroid are given by the vector

5 = %id@{x-aﬂ d*RI(E,R)V ¢, (5.R) .
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where g,(§,R) are fluctuations of permittivity in the point (§,R), [I(&,R) is
intensity at the point (£,R) generated by the source located in the plane £=0; x is
the thickness of the turbulent layer, B, = [[d*RI(0,R).

The random displacements of the image in the focal plane of the optical
system (equivalent to a "thin" lens with focal length F and area ¥ = ntR; ) are given

by the expression

F

b : rl
P = kzj;:f"?pS{x, p)d’p ,

where k is the wave number of the radiation, S(x,p) are the fluctuations of the
phase of the optical wave over the aperture of the optical system (in the & = x
plane) at the point p. The mutual correlation of the random vectors p, and p,, is

given by

K = (popr )/ |07 )P '-]M :
Here <...> denotes averaging over the ensemble of realizations of the random
function &,(&,R).
To make the situation more clear, let us consider the mutual correlation

between random displacements of the center of gravity of a Gaussian beam and the

center of gravity of image for a infinite plane wave. The beam and the plane wave

propagate along the same optical path.
In that follows we assume that functions (I/(x’,R)) and @ _(x .x) are

isotropic and average intensity is given in representation
2

a ~R*lakys(x")
g

(x,R)) =

-

2 '
agy(x")
where
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0="% 4 and f are initial parameters of the Gaussian beam Dg(2a) are phase
-x.f

| =
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structure function, X" = x&. All in all we obtain
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The form of K is similar in the case of spherical wave and also in the case when
these waves or Gaussian beam are reflected from a flat reflector with infinite radius.

In calculations we use the following spectrum
_ 27,2 2y-11/6
® (x) =0.033C,; (x° +x;) ;
which accounts for deviation from a power series in a vicinity of the outer scale

L = 27x;'.

As an example, let us estimate correlation between displacement of image for a
plane wave in the focus of a telescope and random displacement of a beam with
initial diameter equal to the diameter of the input pupil of the telescope. Estimation
is performed for a homogeneous path, the parameters of the problem are the

following:

6/5
Ky >> By, dgrs Ik kR: >> x, H"(é DJ(EH)] << 1.

We obtained the value of K approximately equals to 0.84.

Thus, the high positive correlation was shown between displacements of a
Gaussian beam and displacements of the plane wave centroid assuming that beam
propagation and image forming are on the same path and in the same direction.

Due to relatively high correlation, an algorithm of control for correction of
random angular displacements of beam p. /'x can be performed, according to the
formula ofa / 2R,)"p.; /F. where « is coefficient of the loop which chosen to

ensure the minimum of residual angular displacements of the beam

13 21
in [n _a(a/2R) pcf) |
X F /

So, passing from linear measurements to angular it is possible to control a

laser beam position using data of measurements of the reference source image [8].
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Later (Ref. 9) these results were generalized for the case of beam and image
forming when propagation is realized in opposite directions. It was also assumed that
forming of the image in the focal plane of a telescope performed for the following
scenarios:

* plane wave, spherical wave, Gaussian beam,
e radiation reflected from a plane mirror.

For a plane wave propagating over a homogeneous path and for a broad beam

it was obtained that
e K = -0.87 (collimated beam),
¢« K = -0.82 (focused beam).
For spherical waves and any others the results could be obtained from the data

published in Ref. 9. So as carly as in 1979 the sign of mutual correlation was
determined and its value estimated. In Ref. 9 (1980) have been made mention of the
fundamental possibility of using radiation backscattered by the atmospheric aerosol.

In more details these problems are considered in the third chapter of the
report.

Summing up, we can conclude that Soviet scientists in 1976 - 1980 obtained
all functions necessary to analyze random displacements of the image of a sounding
object for bistatic as well as for monostatic schemes.

But when we encounter with some particular problem, we still need to answer
a question about model of scattering (or reflecting) medium, which, in its turn,
defines ‘a model of a secondary source (see Eq. 1). It is possible to introduce the

model of this source directly as well as to solve the problem of backscattering [2].
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CHAPTER 2. EFFICIENCY OF PHASE-CONJUGATED ADAPTIVE OPTICS SYSTEMS WITH
REFERENCE BEACONS

In this chapter an overview is presented of papers which deal with systems
forming a laser beam in a turbulent atmosphere.

One of first paper on the subject was published in 1979 [1]. In this paper the
possibility is analyzed to use two-color adaptive optics system. In such a system
wavelength of a reference beam was taken different from that of the direct beam. The
possibility to use a reflected beam as a reference source was also considered in the
paper. It was assumed that reflected beam travels through the atmosphere two times,
firstly, along a direct path, and secondly, along a backward path. It was pointed out
that the efficiency of correction is higher for a point retroreflector (a point
retroreflector forms a spherical wave) if phase fluctuations in the direct beam are
reciprocal to fluctuations in the reverse beam.

In 1981 the paper (Ref. 2) was published where phase conjugation algorithm was
compared with algorithm of wave front reversal (full field phase conjugation). An
analysis was performed for an adaptive optics system with a point retroreflector. It was
shown that phase conjugation with point retroreflector insures high enough efficiency
of correction. The algorithm is possible to realize with a wave reflected from an abjept
on wﬁch the radiation is focused. In particular it is possible to use a wave backward
scattered by atmospheric aerosol. Correcting distortions in a small-radius laser beam by
phase conjugation algorithm we can use a plane wave or a laser beam with large radius
counter propagating to the direct beam as a reference source.

Later in the book [3] written in 1986 the main theses of Ref. 2 were illustrated
for two limits: correction with a plane wave as a reference one and correction with a

spherical wave. In 1996 this book was translated into English and published by SPIE
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(Ref.4). The problems considered here were put into the first chapter of this book
(paragraphs 1.1 and 1.2) and partially into the second (paragraphs 2.1 and 2.2) and
third (paragraph 3.2) chapters.

In the present chapter we will analyze the possibilities of correction of turbulent
distortions of optical beams. Under consideration we are going to base on the past
papers what were published in Russia from 1978 until 1983.

We will examine two limiting cases: the one in which correction is based on a
point reference source (beacon), and the case of a wide reference beam Qo — = in the
limit of a plane wave |2].

The first of these is realized when both sources (corrected and reference) and are
located in the random inhomogeneous medium and their angular dimensions differ
strongly ka® >> (x; - x), ka® << (x;-xg), and the second, when the reference source
(of any geometry) is far enough removed from the layer of random inhomogeneous
medium, and for which the reference wave is already a plane wave by the time it

reaches the layer.

2.1. Correction of Turbulent Distortions of Optical Beams Using a Point Reference

Source (Beacon)

We will examine the case in which the wavelength of the input radiation differs
from that of the reference radiation. We will use the phase approximation in the
Huygens-Kirchhoff method to calculate the moments of the corrected field.

The corrected field is given by formula

_ G (X, 113 X5 )
U."f b o - dz U G I.tp';xﬂ! .
X (xsp) = [P Uu(m)G(x, "')GD (Xo0 P13 X1 )
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for the phase conjugation (PC) algorithm and formula

U™ (x,,0) = [ pU(0) (. 93 %, )G (%, 93 %, 1)

for the wave front reversal (WFR) algorithm. It follows that the moments of the

corrected fields can be expressed in terms of the moments of the product:
B(xy, p, 13 Xo, p1. P2) = G(x1, p; X0, P1) G (X1, p; X0, P1)- (1)

First, let us consider the behavior of the average corrected field (U, (x,,p)). Here

the angular brackets denote the ensemble average over all possible realizations of the
random inhomogeneous medium. It is well known that the average field in the absence

of correction is of no practical interest since

U{IE,p H d’pU, pl}G( X Pe Xy, P1)

ﬁ;;up{—%ai}j{ d’o,U,(p) explik 2((:; i)c{,)} )

since o° - the variance of the phase fluctuations - becomes significant already at short
distances under conditions of real atmospheric turbulence. At the same time, the
average corrected field is given by

1+:£1

U (Tnp) ('1+—ﬂ) X
(3)
k' 1+ . kp' }

1 — P
x-ﬂxp{ ZD(-’CUF’& = pi%0) - nz(t]-xn] (l+ﬂz)+I2(Il_xu]

for the PC algorithm, and
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ok T _ k(p” - p})
'~.Uk(x1rp).-' = —21::'1‘1 “x, ’-‘XP{ 5 D (x;,p—py: x,.0) +i m *

(4)

x [[d’p,U,(p) éxp{fkp, H}

for the WFR algorithm. We find that for a wide enough (€ >> 1) beam the average

field for the PC algorithm

\ o J'cp" 1 kp® o | )
U, (x,,p)) EXO{! 30 (5 %) 20, ~ %) jﬂ,[x”p,xu,ﬂn) ,

p =0,

diffracts practically the same as the field in vacuum

for points p < ry, where ry is the coherence radius. For p > ry the mean field falls off

faster than the diffraction field. In contrast with phase conjugation, wavefront reversal

reconstructs the mean field (4) in such a way that the input plane wave {Uu{p) =1) in

fact forms the point reference source (by a process of focusing):

.'. k
Ol =8o-)

Average intensity distribution. Let us turn now to an analysis of the higher moments of

the corrected field: the average intensity distribution and the variance of the relative

intensity fluctuations. For PC correction the average intensity distribution in the phase

approximation is given by
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{Ii(x::p)) = (ﬁ"(Tk—-Tﬁ ] [1d°%0.U(R)Us(p)

x explik %;3) ik [(p, i;]) +[=D,(x,, p: X,,0)

- D,(x,.0; x,, —p;)+j D,(x,~pi ;.01 — ) +

(7)

1
+ 2 D;{xp P xu:-ﬂ - P}_}”

Here and below we will assume that the point reference source is located at the origin.

Transforming now to new variables: p —p, =pr, p+p =2Rr, p=rr,, and

introducing the notation g = kr’/(x, - x,), and g, = kr /F , we have

(x,, r)) = _f}’ ; [[d’pd’ R exp{- 9 (RI ] +1i(g, — q)Rp +
+igrp - i dnlnr” +(1-n)p - ®)
- ; (1-n)p+nr - % (1=n)p—nr ]}

The integration over d*R in expression (8) can be done analytically, whence we obtain

(L[, 1)) = qﬂIJd’chp{ [ qq; }] 2,

44
2 e . S, | 1, .
+igpr - [dnlnr” +(1-n)p” - s(1=-m)p+ - )
0
1, &3
2 E{I—n)p— 1)

It should be borne in mind that for the same notation in vacuum

bl ) = [1-1-!.'2 (q; t}'] V{ [q +ﬂ (g - ]} s

Let us consider the behavior of the average intensity (9) of the corrected field for

various turbulence intensity regimes. As our input radiation we will use wide (Q >> 1)

18
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optical beams. The average intensity distribution varies substantially, depending on the

focusing of the input beam:

(I (x;,1))= g |[ dpexpi- Z{E‘i (1 + ﬂ’)p‘ + igpr —

S(=njp+nr” - (1n

1 L) 5
~ [dnlnr™” + (1-n)p
o
1 5
=5k=njp- 1)
for a collimated beam (gr =0), and
(I(x.1)) = f‘: [[ d’pexpi- 4'; p’ +igpr -

3

~ [anline” + (1-n)p” - é'(‘ —npnr - (12)

(1-n)p—nr 1)

bl | =

for an input beam focused in the receiver plane (gr = +¢). In the case of a divergent
beam (gr = —g) the average intensity distribution is given by an expression practically

identical  with  expression (11) except for the absence of the

term exp{-‘;i(l +4ﬂz)p2}. For "weak” fluctuations (¢>>1) the region of substantial
by 8

integration over p for the collimated and divergent beams (I1) is given by
5 <(g0) " << 1. from which it follows that it is possible to expand the last term in

the exponential in expression (11) in a power series in p:

2 1 3 %
fft(x,,r) = %H d'pexp{— %Epj + igpr — gp‘j}. (13)

We find that for ¢Q >> 1 the average intensity distribution (13) is practically
indistinguishable from the vacuum distribution (10), and for a wide enough beam

(Q >> 1) the condition gQ>> 1 can be realized even in the region of "strong"
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fluctuations (g << 1). If we apply the quadratic approximation of the phase structure

function to expression (13), we obtain

. n 3r2
(I,(x,T)) = ———€X SO L ; 4
(7)) = (QMM)} (14)
where v= 1. For the case of "very strong” fluctuations (g << 1), even for gQ <1, the

region of substantial integration over p in expression (11) is given by p 2 [qﬂ}w’ >1,

from which it follows that

(I(x;, 7))/ Lol X,y 7) = exp(- ; r”’), forr <1, (15)
for r>>1, (L(x,r))/I(x,r)= g2 EX[{--{ rzj , (16)
4y Q

and the difference from the vacuum distribution (10) is substantial.
Thus, for wide collimated and divergent beams, all the way to the region of "strong

fluctuations (g << 1), the average intensity distribution of the PC-corrected field is

diffraction-limited . In the region of “very strong” fluctuations (g2 < 1) it remains

essentially diffraction-limited only forr <1 (_p_ {rn), but for r> 1 the distribution is

greatly changed, specifically, it is broadened.

For a focused beam (gr= g) the average intensity (12) has a somewhat different
character: already for ¢ < Q (even if, as before, ¢ >> 1) for r<1 expression (13) is
valid, and, for r >> 1. expression (16). Consequently, correction of a focused beam by

the PC algorithm is much poorer than for a collimated or divergent beam.
At the same time, the WFR algorithm, which corrects the field according to the

scheme (1.2.2), forms the average intensity in the phase approximation according to the

formula
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K .
[ 1=i3) 411_—(‘3(1 B Iﬂ): H ddpuUu(F&)Uu(P:) X
x explikp ((3 - '3 +[-D,(%,, 5 %,.0) = D,(x,.0 %,y — ) + (17)

1
+3 D,(x, - pixy.p—p) + é D,(x,,p: X0 — )1}

What distinguishes the integrand in expression (17) from the integrand in expression

(7), which applies for the PC algorithm, is the absence of the term
exp[:’k (p;" ~p§)ff'2(x1 —x,,}]. Making a change of variables and carrying out the

integration in Eq.(17), we obtain

2 q qr
167 (x. ’Hdp XP{{4£1+ 4q ]

+ igrp - idnﬁnri +(1-n)p x

Lilx,r)) =

--z-l-,(l"n)p-fnri - (18)
= (1=m)p=nr b
2

For a collimated beam this gives

J \ gflkz 2 ,
( ,T)) = d —— 'H =
Iise1) 167°(x, - x,)° ff o pexpt- 4:1 il

[ : : 573 53 .
- [dnlnr™ + (1=n)p” ~ S (1-n)p+ r” - (19)
-~ (1=m)p=nr”,

and for a divergent or focused beam (§° = Q)

/ , gk’ 2 N 315 )
‘-.I.t(xl:r]a = lﬁx3(x1 i xn)z Hd pexpi 40 (1 +Q )I:-l +Hgpr
— [dnlnr™ +(1-n)p - % (1-m)p+nr - (20)

- 5 (=njp-nrD,
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If we compare expressions (19), (20) with (11), (12), we find that the WFR
algorithm gives practically the same dependence on the turbulent intensity for a
collimated input beam as the PC algorithm gives for a focused beam, and vice versa,
while for a divergent or focused beam, to within a constant factor, WFR correction
gives the same average intensity as the PC algorithm gives for a collimated beam.

In the PC algorithm, correction is directed at compensating for the action of
turbulence and providing diffraction-limited characteristics of the radiation at the
receiver. The radiation distribution formed is almost the same as in vacuum, the only
errors present being the result of incompleteness of correction. The PC algorithm is
most effective for collimated and divergent beams: an almost diffraction-limited average
intensity distribution (as in vacuum) is realized as long as ¢©2 > 1, i.e., even in the
region of "strong" intensity fluctuations a focused beam is well corrected only in the
region of "weak" fluctuations g >> €. At the same time, the WFR algorithm
compensates not only the fluctuational phase shift, but also the diffractional phase shift,
focuses an initially collimated beam (with good reproduction of the average intensity
only for g > ), and collimates divergent and focused beams with good reproduction of
the average intensity distribution for ¢Q2 > 1.

Residual intensity fluctuations. Let us dwell now on the intensity fluctuations of

the corrected field. We will consider the phase approximation for (I7(x,,r)) and o¢ in

the case of PC correction:
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L - [ .I .|:

-_:I,f(xt,r};:- = ['_" 5 J Hdlpuj.cUo(H)U;(Pz)vu(ﬁ]yl;(p#) x

2x(x, - x,)

— 3 +03 ~ P _ ;s (= 2) (P - )
As-x) T (5-x)

+[=D,(x,9:%0,0) = D, (%,0, x5, 91 — ) + %D,[xmp;xmp. -p)+

2
x explik 1 "

+ ; D,(x,,05 %00 = 1) = D,(%,, 01 %,,0) = D,(x,.0; x,,p, — p,) +
+%D;(xls“9;xoiﬁ‘PJ)‘*“%D;(-’CHP;-"%H -p)+ (1)
+ %{ZD,(x,,O; X0 = P1) = D,(X9 %o — 1) = D (%0505 X014 — p) +
+2D,(x,0: %5, = py) = D,(%,=pi Xps 2 = ) = D,(X,, 03 %550 — )] -
- %IED,(x,.t},xmp. - @) = D,(x,-p; %00 — 1) = D,(x1 05 X0 — ) +
+2D,(x,.0, %, 0, = py) = D, (X0 X5 s — ) — D, (X5, 05 X550 = o)1}
The quantity {:I ,;(x,,p):z 18 written out analogously. The residual intensity fluctuations
of the corrected field can be characterized by the quantity
oilp) = (I(x,,p))/! fk(x,,p)}z = 1.
Let us transform in expression (21) to new variables:
rn=p+p+p R, G =0 =0~ PP
nn=p-p—p+h Zrn=p+p+p+p-
From these calculations, we find that tor the case of weak fluctuations (g >> 1, ¢ >> Q)
the region of substantial integration in I 7} and Vi ,r'_‘ijl is _rl,r,,r3| << 1. wherefore the
corresponding exponentials in Eqg.(21) can be expanded in their respective series since

r| >> 1, Iy, 13|, which gives
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i = 2
oi(F) = 2 s expl- 2 [ . “@H )

) . : 5 B 53
f(‘? = ‘?r)rzrl —ignrHn + 5 +h -5 —ln+rn

1 == 2
=i ra:ﬂ]" [ [[d°r;; expi- %[ﬁz +7 4 "12[] T & {qqz qf')' J] b

(22)

i(q — g, )1, — igryr} = E{(q ﬂ)“] << 1.

Consequently, in this region (¢ >> Q) for arbitrary parameters of the input beam the

intensity fluctuations are completely suppressed by PC correction. Note that the

dependence of the diffraction part of (/7(x,r)) on r, is such that the region of

- . s 2 H
integration over I, is [1+ﬂ’(q—qr] -'qzl times narrower than over T, and T,

Therefore, for collimated (grp=0) and divergent (gr=-g) beams, for ¢ Q >> 1, even in

the region of “strong” fluctuations (g << 1), the r, -dependence of the integrands in

-

(1}(x,,r)) and (I,(x,,r))" is the same. Therefore it is possible to calculate

Q(g-q:) |, .
.U d’r, EKP{— % ll -3 %}ﬁ = Iqrar}s

by setting r, =0 in the rest of the integrand. Let us consider the region in which
g < Q, but gQ >> 1. Here

oi(r) = 013(gQ)"“ 7, (23)
and we have efficient correction for r < E.S[qﬂ}'“ . If the fluctuations are so "strong"
that g < 1, then here as before the region of permissible values of [r| and || is Q
times wider than in r,, wherefore the exponential in Eq. (21) can be expanded in a

series in the small quantities T, (small in comparison with r, and r, ). We then have
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ni(r) 2 11 ﬂq.-ﬂ) ol
and there is no correction in the region r >> 1.

The intensity fluctuations in a focused beam possess the property
2 [ i6
g>>£, o= {qﬁ) s

or(r) = 113(q/Q)"r, r << 1

1, g/Q2 =1, "
etk er[r) =1, r>>1

g<l,q/Q<<l ol(r)=113g/Q)"r
in the very narrow region (r <<(Q/q)'/12).
The PC algorithm suppresses fluctuations quite efficiently
« for a collimated or divergent input beam under the condition g2 > 1 for weak r, and
under the condition g2 < 1 for r < 1,
e for a focused input beam under the condition ¢/ >> 1 for any r, under the

condition 1 < g < Q for r << 1, and under the condition ¢ < 1 for r << (Q/g)V/!12 .
At the same time, the WFR algorithm leads to an expression for {'ff(x[,p)) that
practically coincides with expression (21) with the only difference being the absence in
the integrand of the phase term ex]-){fk (P} =93 + 05 —pi)/2(x - xg]} . Analysis shows
that this circumstance turns out to be quite important: the WFR algorithm is most
efficient at suppressing fluctuations for a focused input beam (just as PC correction is

for a collimated or divergent beam) and is substantially worse for a collimated or

divergent beam.
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2.2. Correction with a Plane Reference Wave

In the preceding sections we showed that the algorithms of adaptive correction,
based on the reciprocity of fluctuations, can be used effectively for the correction of
turbulent fluctuations in optical waves of various geometry. Of course, the ratio of the
dimensions of the input and reference sources determines the efficiency of this
correction. For a wide optical beam (02 >> 1) the most suitable reference source is a
point reference source: for a plane wave a good reference wave is spherical, and
conversely, by virtue of reciprocity. For a narrow input beam (Q << 1), the reference
source should be wide (€2, >> 1), in the limit - a plane wave.

This is realized in practice when we use a reference source which is quite far
from the turbulent layer, as a result of which by the time the reference wave arrives at

the layer it is already a plane wave. In this case the PC-corrected field is written as

U - = d: d} U . V(Iutﬁxm pl)v (xtr ‘F_ﬂ;_xﬂﬂ L
k(xl P) H pax, u(F’l) EXp(mlp) ‘,D(xpxﬂ;xm p]
Here the reference plane wave propagates at an angle x, to the X axis. Let k x, = 0.

MNow let us consider the corrected field for a collimated beam:

t:Xp{-— p’ "[Zal(l +A/gQ) +i2a’ ﬂ]i ~
Uddxsp) = [T+ A/0q) +1/6] > AL 9

In a narrow beam the mean field

o for "very weak" fluctuations (gQ2 >> 1, although Q << 1)

exp{— p_I _-’[2&3(1 + :'.-’Q)]}
(1+i/Q)

Ut(Iu f') =

¥

is reconstructed to its vacuum value,
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o for Qg =1 the result is practically the same,

» for "moderate” fluctuations (Q << 1, ¢ = 1) the mean field
U=, w BE (e cxp{-—ﬂ- FER LI ;
((xep) = 5 (1-1) 2227 T 22P |

differs strongly from the diffraction-limited field. Thus. the mean field is reconstructed
1o its vacuum value only as long as ¢ > 1.

Let us consider the behavior of the average intensity

40 2

(-90) _[(vi=vi)+amp ’ﬂ_}

“!ﬂ (I,, r).lf = .lé:]é H dzpd‘vu exp{— 4 pl+ l':r(""'l - \"J) —ip E—' = vz—l -
(25)

Here a reference plane wave normally incident on the entrance pupil has been used;
here g, =0 for a collimated input beam, and ¢, = ¢ for a divergent (focused) input

beam.

Let us consider different fluctuation regions. In the region of "weak” fluctuations

(g >>0 even for g >>1) for r the region of permissible values is given by the
condition ps(Q/ q)l": << 0, and for Vi —Va, by the condition

v, = v,/ / g £(Qg)"*, whence expression (25) simplifies somewhat:

"
i Q 'l | q .- ; (V +‘U")
(I(x,r)) = 65 [[dpd v, expi— 16° +ir(v, = v;) —Ipsz -
I I (R R N
4 3
2g q 0 q (26)
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i.e., in the second exponential in expression (25) we have set p = 0. Making use of the

equality

2 1
f_[d’pexp{- ﬁ_} p’ +ip(v, —v,) - - + q;;}p{vl H v:}} =

4q

’ s o
40 qﬂ[(vl+v2)—fqu(vi—vl):’

Equ— — 5 - ]

I:q +Q.F'n ) 4('?; +q}eﬂ)

o

(27)
we arrive (in the case of a collimated input beam) at the expression
f \ ‘l-"z == \r'z
t,h(x.,r)'r 4 , 5 Hd'u,. :xp{n’(v, -v,)- ,( 12_:) i
q
53
+ .[xv' - v.!)g - Q(vt ) }exp{— 3w ":'17 }
B 4 8 A 4
q q q 28)

We can simplify this expression further by introducing the notation v, — v, = v,

v, + v, = 2ji, as a result of which we arrive at the following expression:

24Q 8¢

If we use the gquadratic approximation, we obtain, taking into account the

, v_.Q o (1+9) , 30 }
I (x,r)) =" [[d*vexpirv — vi—
Ti(xer)) 4rq I (29)

conditions ¢ >> 1 and Q << 1,

(30)

(I(x, 7)) = 4q{|3+l4q0.) p{ x—xu)q[B+1’499)}

where P satisfies the relation

c}(p(— g(v,r'q]”) = exp(- Bv’).
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If g is very large (p << 1/4¢0) since B~g>7), the average intensity distribution is
practically the same as in vacuum:
I (x,r)=0° ﬁxp[— — ;EPI—J .
(% =x,)
Note that expression (30) for the average intensity distribution remains valid as long as
q >> Q, i.e., even for ¢ < 1. If the fluctuations are so "strong” that ¢ < Q << 1, then,

resorting to asymptotic analysis, we obtain

(1) = 22 p{ g ___ksi.,}_
(4 +Bg ) 4(4 +Bg ) (x, - x,) (31)
From expression (31) it can be seen that not only does the axial intensity
increase by a factor of ¢/[Q(4 + Bg®)] in comparison with the vacuum distribution, but
its distribution is also broadened.

For a focused beam (gg = q) expression (2) transforms as follows:

Q

T(x,,r)) = Ty [[dpd'v,,.
I | - !g
exp{“ % p’ +ir(v, —v,) - ﬂi(v' ; va) (v 2;1) = [(."f' “:); 9p] }

i % 5 v 53 3 1573 a 53 5 i3 » 53
¢ A = | | 2| |
exps— | dnllp +‘p+n’—"‘= +m—1 +m-4 —lp-n-4 —‘Nn—‘ ]
{ ! . q q q q q

(32)
For "weak" fluctuations (gr>> 1, gQ2=1) the regions of permissible values of the

integration variables in Eq. (32) are

p < Py v, - v, <(g9/Q) M=

g q
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Therefore, in the second exponential in expression (32) we can set p = 0 in comparison
with v /g. This makes it possible to perform the integration in Eq. (32) over d%p
analytically. Then, making the substitutions v, — v, = v and v, + v, = 2u , we have

f - HI 2 s e
(I (xp1)) = e +02)Hd vdy =

expliv—i_ B _ v  pla 3w
P g1+Q))  4q(1+ Q%) g1+ Q%) 8"

-2 fjarvexpfirv-viaga- (v}

4ng (33)

The average intensity distribution in a focused beam afier PC correction is written as

(Ly(x0)) = L2 exps— - 2 g i -
L) = (15 aq08) | (1448009 (- %) |

If 4pgQ << 1, we obtain the vacuum distribution of the average intensity. The condition
4B << 1 is realized even for "very strong” fluctuations.

Thus. for a narrow beam the PC algorithm using a plane reference wave focuses
the input wave even when the condition of "very strong" intensity fluctuations is
realized. The WFR algorithm (recall expression (13) for correction in narrow beams

using a plane reference wave (0 >> Q, 0 << 1)) forms such a distribution in vacuum:

fi 2
=00 1)~ o0 )

o for 8, =€, 8=0 I(x,p)~ 1 for arbitrary p,

o for 8, =Q,,8=0 I,(x,p)~ 1, for arbitrary p,

Ex 3 kp}
o for 8, =0,8=0Q I,(x,.p)~ Q" exp -Qm .
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Consequently, the WFR algorithm can be used to form not only a narrow beam,
but also a plane wave. In this case, if the reference plane wave is focused, then the
corrected field forms a plane wave; if the reference plane wave is collimated, correction
via WFR provides a narrow input beam with diffraction-limited characteristics.

It is not difficult to show that for correction using a plane reference wave
normally incident on the entrance pupil, the expressions for the corrected field in the
WEFR algorithm coincide to within a constant factor with the corresponding expression
using the PC algorithm. An important distinction between the corrected field in the
case of a plane reference wave and the corrected field for a point reference source is
that suppression of the fluctuations in the corrected field is not ideal even on the
optical axis (p = 0).

Finally, let us dwell on the intensity fluctuations of the corrected field (8) in the
case of correction by a reference plane wave. In particular, for "weak" fluctuations
(g »> 1), after some not too complicated, but cumbersome calculations we find that the
variance of the intensity fluctuations o} = n/2¢€2. This means that when using a plane
wave as the reference wave it is possible to suppress the intensity fluctuations (in optical
beams of arbitrary geometry) if gQ2 >> |.

Along with correction in narrow beams, a plane wave can be used as the

reference wave when correcting so-called diffraction-limited beams (Q = 1).
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CHAPTER 3. CORRECTION FOR RANDOM ANGULAR DISPLACEMENTS OF OPTICAL BEAMS

In problems of optical location, communication, and energy transmission one
frequently runs up against the problem of transporting radiant energy in the form of a
light beam to an object located in a random inhomogeneous medium. Here, as a rule,
it is necessary to maximize the amount of energy delivered to the object. As is well
known, scattering of radiation by refractive index inhomogeneities of the medium leads
to a decrease of the average intensity in the near-axial region of the light beam and to
the appearance of intensity fluctuations, which taken together substantially degrade the
energetic characteristics of the indicated systems. '

A radical means of dealing with these undesirable effects is to use various
adaptive methods which allow one at least in principle to almost completely eliminate
the influence of the inhomogeneities of the medium. The essence of these methods
reduces to controlling the initial distribution of the beam field on the basis of
information about the instantaneous distribution of inhomogeneities of the medium in
which the beam is propagating.

In light of the difficulty of controlling multi-element adaptive correctors
operating in the turbulent atmosphere, correction algorithms of the simplest type,
correcting, for example, the total wavefront tilt, acquire special importance.

Since the tvpe of correction under discussion is quite simple ti use, it is worth
our various characteristics of the optical radiation that has passed through the layer of
turbulent medium. To control the direction of an optical beam with the aim of
decreasing its effective diameter, we can make use of the existence of a statistical
connection between the random displacements of the energy centroid of the optical
beam and the centroid of the image of the given beam (or an auxiliary beam) in the
optical system.

It should be noted that the method of solution of equations déscribing statistics
of a laser beam centroid random shifts can be used successfully in analysis of an image
forming in adaptive telescopes employing a laser guide star.

So in Ref. 1 (1979) the results were presented of investigations into
characteristics of a mutual correlation function and variance of the centroid random
shifts of a Gaussian beams and random angular wandering of a plane wave image. (To

my regret Ref. | never has been published into English.).
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This approach was further developed in Ref 2 published in 1980. In
contradistinction to Ref. 1 in this paper were considered several scenarios of an optical
experiment. In the each scenario the mutual correlation function was estimated for
shifts of a Gaussian beam centroid and shifts of a reference source image. The schemes
were considered
» with a beacon in the geometry of experiment (direct and reference beams are coaxial

and propagating in opposite directions);
e with a reference wave reflected from a plane mirror.

Mutual correlation for beam shifts and plane (spherical) wave image wandering
was calculated. A possibility was analyzed 1o stabilize position of a laser beam centroid
by registering the position of a plane wave image. Also the fact was stressed that the
backward scattering of atmospheric aerosol is possible to use (experimental setup is
shown in Fig. 35 of Ref. 3 and in Fig. 1 of the present report). An analysis was also
performed of spatial and temporal change of mutual correlation for Gaussian beam
shifts and wanderings of an image of a reference source. It was found out, that from
the point of view of tip and tilt control, the direct and reverse path are reciprocal if a
difference between a telescope axis and direction of the beam is greater than the outer
scale of turbulence. '

In 1981 the results obtained up to date were summarized in Ref. 3 which was
published in Applied Optics. In 1982 a new experiment was described and data were
supplied [4] on using a mutual correlation of random shifts of a laser beam and shifts of
image of a reference source for adaptive correction of angular displacements. The
optical setup of the experiment (see Fig. 2) allowed one to use some reference sources
as well as to employ radiation reflected from an object.

The materials presented in Chapter 3 were published in Refs. 1-4 and also in my
book Atmospheric Adaptive Optics (Ref. 3).
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Fig.1 Scheme of the telescope. X — additional imaging aperture, MS - image moment sensor,
A - amplifier, AE - adaptive element, PR - photo-registrator.

Fig. 2 The optical setup of the experiment. I, 2 - lasers, 3 - lens, 4 - photodetector, 5 -

image motion meter, 6 - tip-tilt mirror, 7 - flat mirror.
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3.1. Registration of Random Angular Displacements of Optical Beams

Due to development and improvement of adaptive optics systems and algorithms
modern scientists and engineers investigate attentively correlation links between
parameters of optical radiation traveling in a random medium. For example, to
decrease the effective size of the beam it is possible to use the correlation between
random displacements of the center of gravity of this beam and the center of gravity of

its image in some optical system. References sources (beacons) are possible to use as
well as beams reflected from a target [1].

Let us specify the statement of the problem. We wish to examine the mutual
correlation between the random displacements of the energy center of gravity of an
optical beam that has passed through a layer of turbulent medium and the center of
gravity of some image formed by the optical system [1-5]. This can be an image of a
reference source (beacon) or of the optical beam reflected from a flat mirror with

infinite radius. Random displacements of the beam centroid are given [6] by the vector
1 * 3 (1)
P =5 p [&(x-O " RIE R £ (ER),
60

where g (£,R) are fluctuations of permittivity in the point (E,R), [(E,R) is intensity at

the point (E,R) generated by the source located in the plane E =0; x is the thickness of
the turbulent laver, P, = J]-dzfif{ﬂ,R}.

The random displacements of the image in the focal plane of the optical system
(equivalent to a "thin" lens with focal length F and area L = nR‘f ) are 'givcn by the

expression |7]:

¥ 2
=— 2 [[V.S(x,p)dp .

where k is the wave number of the radiation, S(x,p) are the fluctuations of the phase
of the optical wave over the aperture of the optical system (in the £ = x plane) at the
point p. The mutual correlation of the random vectors p. and p_ is given by

K = (ppu)/[(0203)] - )

Here <...> denotes averaging over the ensemble of realizations of the random function

e,(5,R).
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To make the situation more clear, let us consider the mutual correlation between
random displacements of the center of gravity of Gaussian beam and the center of
gravity of image for a infinite plane wave. The beam and plane wave propagate along
the same optical path. The phase gradients are calculated in the first approximation of
the smooth perturbation method [8]:

V,s(x0)= X | o e Y )

4r (x —x' 2(x - x')
Introducing this formula into Eq. 3 we obtain

(o) = = F I dé(x - )I dxl,-; J:_Idzp'ﬂdlpdzﬁ(p—p’)x

87P, L D (x —x)
X COS Mg pj)-é- [I(£R)Ve(a(&R)a(x"p")) )
E(I—x')' ’ ®\E\S i .P )

The absence of correlation between local and integer quantities is used in the procedure
of averaging.
In the assumption that fluctuations are delta-correlated we obtain

Ve &(&ER)E(x",p)) = —478(x" - &)[ d*xx®_(0,%) sin k(R - p’)
Let us also introduce a pupil function of the following form
[jd?o— [[dipe %

where T ==R’. After these mathematical manipulations integration is possible to

perform for the following formulae [2]:

"2
Hdipd #1Rix(p — p') cos %sin K(R — p') =
2 oL :
* 2%

from the above it is follows that
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1 2

(0 ) = fafx*(x )| d*RU(x', R))[f d*x®, (0, x)x*

¥

2
« cos kR cos X=X mn

In that follows we assume that functions (/(x",R)) and ® (&, x) are isotropic and

average intensity is given in [7.9] representation

.- ' \ a ~R*lagg(x")
:I{I,R),’=—:‘.——E 5 .

where

aky(x") = a'{[l - } g)

1 6/5
+Q7 4 9'3(2- Dy {2a)) } ;

(3= k‘:_ , a and f are initial parameters of the Gaussian beam D (2a) are phase

3
-

structure function, x' = x¢&.

As a result we obtain

K {R{, +agy )J - 2k%x(1 = &)

4 i

ap,pmh = 27°x Fjdf(l - ;’]J.dx.r'"tb (k) exp[

To perform normalization of Eq. 3 let us calculate functions {Ipf ) and %,F':r—} In

diffraction approximation

2
Ix_Tx-l'd?;(l_;)EdeKHq}(} p[ KﬂQ(E..}J
and |
= 2 p2 =
e':pEF ; = 41:1sz;[ {ﬁ_!}-dbﬂ{idlsilc) e‘xp{— s ZR“) cos 2“5; °) 3
where

172
=|leor -2 ] ,
qg(&) [i +( Jf,E_.)’

All in all we obtain
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K = [de-2)] dm*m,fx}exp(- e *"iﬁ'}] "

4
oo “572) /(-0 >

Imjﬁ, (t}ﬁxp{ 2})] [Idﬁfﬂ‘“*ﬁ’ﬂ’ (x) x (7)
 exp{ - K)o U =00)

The form of K is similar in the case of spherical wave and also in the case when these
waves or Gaussian beam are reflected from a flat reflector with infinite radius.

In calculations we use the following spectrum
_ 2,..2 2,-11/6
@, (k) = 0.033C3(x? +x2)™"V¢ |
which accounts for deviation from a power series in a vicinity of the outer scale
L, = 2nx,'. As an example, let us estimate correlation between displacement of image

for a plane wave in the focus of a telescope and random displacement of a beam with
initial diameter equal to the diameter of the input pupil of the telescope. Estimation is
performed for a homogeneous path, the parameters of the problem are the following:

: 6/5
xy Ry, (Anes /% kR: >> x, Q‘{% D,{Ea}J << 1.

We obtain the value of K approximately equals to 0.84.

Due to relatively high correlation, an algorithm of control for correction of
random angular displacements of beam S /x can be performed, according to the
formula a(a /2R,)" p.; /F , where a is coefficient of the loop which chosen to ensure

the minimum of residual angular displacements of the beam

in (2 - 20/ 2R) "5, V'
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3.2. Correction of Random Angular Displacements of Optical Beams

According to the existing classification [10, 11, 5] one of the simplest ways of
correcting the distorted wavefront of an optical beam that has passed through a layer of
turbulent atmosphere is to compensate for the fluctuations of the angle of incidence
associated with the wavefront tilt. A decrease in the mean diameter of the beam in the
observation plane due to such correction leads to a relative increase in the intensity of
the incident field. In a number of cases this lowest form of correction in the class of
possible phase distortions can be effectively used in place of an adaptive phase
corrector, ¢.g., in systems in which it is necessary to minimize the random wandering of
the beam as a whole, all the way to low-frequency random refraction. It is clear that
this type of correction is most effective for distances traversed in a medium in which
the optical beam does not break up into separated luminous points, but fluctuates on
the average as a whole.

Since the type of correction under discussion is quite simple to use, it is worth
our while to estimate its efficiency. Let us consider this question for systems using both
reference sources (beacons) and reflected optical beams (those which have traversed
their paths twice) [5, 10, 11].

In connection with this, we will pay close attention to the correlations between the
various characteristics of the optical radiation that has passed through the layer of
turbulent medium. To control the direction of an optical beam with the aim of
decreasing its effective diameter, we can make use of the existence of feedback between
the random displacements of the energy center of gravity of the optical beam and the
center of gravity of the image of the given beam (or an auxiliary beam) in the optical
system [2].

Let us specify the statement of the problem. We wish to examine the mutual
correlation between the random displacements of the energy center of gravity of an
optical beam that has passed through a layer of turbulent medium and the center of
gravity of some image formed by the optical system [5]. This can be an image of a
reference source (beacon) or of the optical beam reflected from the object. The
random displacements of the energy center of gravity of the optical beam are given by

the vector [6, 7]
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P = 5 | (X~ O] [@RIER)V n (5. R), o
oo

where 7,(E,R) are the refractive index fluctuations at the point (£,R), [ (E,R) is

the field intensity at the point (£,R) due to a source located at the origin in the

£ =0 plane, x is the thickness of the turbulent layer, and

P, = [[d*RI(O,R). @)
At the same time, the random displacements of the image in the focal plane of the
optical system (equivalent to a "thin" lens with focal length F and area £ = nR; ) in
the phase approximation are given by the expression [6, ?j;

. i 2 (3)
Pr === Ij V. S(x,p)d’p ,

where k is the wave number of the radiation, S(x,p) are the fluctuations of the phase
of the optical wave over the aperture of the optical system (in the & = x plane) at the
point p. The mutual correlation of the random vectors p, and p,, is given by

K =(pps) "[a'pf lf..pfr']m ~ )

Here <...> denotes averaging over the ensemble of realizations of the random function

n(&,R). Let us consider some optical scenarios for which K can be calculated

analytically, namely:

* a correction scheme based on a beacon (the beam which is to be corrected and the
reference beam are coaxial and propagate in opposite directions),

¢ a scheme which uses the wave reflected by a flat mirror as the reference radiation,

+ a scheme which uses a point reflector.

The specific feature common to all these optical scenarios consists in the choice of
the reference source on the displacements of whose image center of gravity the
correction is based.

From the point of view of calculating K, these scenarios differ only in the analytic
expression for AS'{x,p!. It is presently generally taken for granted that the phase
fluctuations in the optical wave are described with sufficient accuracy by the
approximation of smooth perturbations [8] . At present this is practically the only way

of obtaining an analvtic form suitable for calculation. For a Gaussian beam reflected
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from an unbounded flat mirror located a distance X from the transmitter, in the
approximation of smooth perturbations we have [14]

V.S(x <> x,p)= f%jdx*ﬂ{xg explix,p —
i}

<k i (2x - x’) PTIn. <2. 4
%k J+x1?exp[nclp? ﬂ_ﬂc_ +

2 o z
+x,y exp[ Py i 1%i)]+xﬁ'¢xp{ ey + 8- :”dn{xl,x) (5)

where

| + dox’ 1+i(2x - x') &
S =y S— == _"r+'il ]
1 +i2ax ! | 4+ i2ax ka’ 2
a and fare the parameters of the Gaussian beam, dn(k,x') is the spectral density of the
refractive index fluctuations ny(r), where

m(r) = [[ dn(x, x") exp(ixp),
r={x.p}, xp=x,y+x,2

In the present notation we can rewrite expression (1) for p. in the form

% 6
- L fae(x - [ RIR )t 1, explicR) o

then from (5) and (6) we have

PPs)=5p }jdx jj d’p[] *RI(R,E)) x

2k

x' : .. .K(2x-X")

'C.?'El?[mm? +8/° x;k'l: ]} @

x H {dn{xl* x'}dﬂ{‘cgs ﬁ)}ltz EKP(!'K-ER){KJ E:Xp[ PY — Fy ﬂ_‘jf }:’
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In the averaging over the ensemble of realizations of the refractive index fluctuations in
expression (7), we have made use of the absence of correlations between the local and
integrated random quantities®. Next we make use of the relation

{dﬂ{ﬁl, X )dﬂ{x:r E )= 2]':5(){'—5,)5(1{] + X, )Cb“ (E_,, K }dzﬁ|dzﬁzr

and to simplify the calculations we replace the physical aperture by an untruncated
Gaussian aperture 9] :

fJdp= _]mj d’pexp(-p’ /2R}),

where I = nR;. This last step allows us to carry out the integration UJ' dzp), which

leads to the expression

G fdf,(x —&)[[ *RU(R,£)[ dxx*®, (x, £) exp(~ixR) x

YR x(2x-§) . o T
{‘:"ﬂp{ 5 % +9 ex 5 - — oy (8)
+ 9 ex —E-"::-‘?‘i + Fy*— = (?.x ﬁ + §=exp| — 22 ?* R“I r?*
2 2k 3 i

In the calculations that are to follow we assume isotropy of </(R,E)> and ®,(x,E) and
make use of the following representation for the average intensity [6]:

\ 9
.I(R? E.-}’ E ( )

a _p2 2
RO exp(—R" / ag,(2)),

where aij(ﬁ) = az[(l &/ f)2 +Q%+ Q"(l

&/5
. Dy(23)) } Q=ka /&, and Dy2a)is

the phase structure function. In this case

2.2
K aeﬁ-)
4

[[d’RU (R, &))exp(-ixR) = 7a® exp(-
Further simplifications of <p.p.g> are possible only for specific forms of y and 7.

To estimate K in addition to <p.p.s~, the corresponding variances (p§> and {pfF>

are needed. Thus, for the diffraction approximation [15], we have

el 11 it iz Iﬂ
(p7) = x"x* [ de(1 - £)’ [ dix’ @, (x. XE) exp(-x’a’q* (€) / 2), e
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where g(e) =[g’Q7 +(1-x2/ f)’]”. The quamtity (p?,) can be calculated

with the help of (3) and (5), in analogy with (p,p’ ):

(L) = WP de(1 - & / ] dPec®, x, gy{p[ R e a)] ¢

2k
_KPR %% _KO R k' @x-8)]
+¢xp{ > K % +ex = + fy T (11)
% Fz?*z R:? N ﬁ.
+cxp[ 5 + %0

Expression (11) is the variance of the jitter of the center of gravity of the image of a
Gaussian beam reflected by an unbounded flat mirror. We now finally have all the
components needed to calculate K

Expressions (8) and (11) substantially simplify for those cases in which an
unbounded plane or spherical wave is used as the reference wave [2,5]. Thus, for a

plane wave (y =9 =1) [2, 5]

(PP ) = —4n° [ de(x - £)] dho*®, (x, E)
i} [t}

(12)
“:Jx KI(I = é} B Kz . )
% cnsﬁ COS — T ex;{ 7 (agy + 2R }:].
i) = 41:1sz aE'lecxsﬂ{,(ic,ﬁ) cos’ nﬁ—xr;:m‘.1 K(x-%) exp(-x’R;). (13)
» 0 2k 2k
and for a spherical wave (y =& / x)
Pps) = 470 F | di(x = )] o', . 2)
2.2 1 2.3

< expl 0By o EIE ﬁ i ga? y, (14)
Oy = 4P| di (- [ o' D, (e ) cos’ S exp - R).

Using these and analogous expressions, it can be shown, for example, that for a

plane wave (i.e., investigating the mutual correlation of the random displacements of
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the center of gravity of a plane wave, and the random displacements of the energy

center of gravity of a Gaussian beam):

K = [ de(1-2)] o', (x, ) cos S X 1 -2)
0

2

% COS %; exp[— ~— (2R} +aﬂ,):| {[} dg_.fdmld),(x,xé_,] X

% COS’ ( }xr:xp{ -x’R}) :[

\ . 152
x [I di(1 - £)* [ dex’@, (x, xE) exp(-x’a’q’ / 2)}} :
1] o

(16)

Other cases: reflection of a Gaussian beam from a flat mirror, reflection from a point

scatterer, and direct propagation (use of a beacon) are described in analogous fashion.

We calculate the integrals in expression (16) using the spectrum
®,(x, 25) = 0.033C;x "[1 - exp(—x / %]

(17)

which takes account of the deviation from a power law in the outer scale x,' region.

For convenience, we denote the integrals in (16) as follows:

K=4/{44)".
Analysis shows that under the condition

x; 25R,- a x/k

integrals 4 and A4; or their analogs can be calculated using the Kolmogorov spectrum

k, = 0). In this case

4, =—0033[ d(1 - £)C2(x2) L{ﬁ Mz + H&;E =

+ (déxr = ﬂ'fig ﬁ))_uﬁ "'(dzr % ;E]_w +(di, = %J‘W,

4, = 0033 aeCie) " O e e L B)

(-2 (20" 2070

Kk

(6209 1229
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= ey

o 2R +ag, _
Here d, = = As for A3, its dependence on x, must be kept since

A= 0.033£d§(l -gycite- T8,
x[(@q'(€) /27" ~(a'q*(€) / 2+ ;) ]
and given condition (18), we can only realize the condition aq = x,'. Indeed, since
q@)=[ea’ +(-x/ f7]”,
in a quasispherical wave (Q <<1), for example, (&) =E’Q)"' >> 1, and for this case

condition (18) does not contradict the condition ag(¢) = K, . Let us consider the

more interesting case x /(kR}) << 1, i.e., that of a large receiver aperture. Then, on

a path with homogeneous turbulence (C2(x£) = C?) we have
I 1 Nt
K =-ja-2{QR +ai) /4] “RY /| [aet1 -2
/ Lo

5 {(a;’qﬁ fzj.i,.rﬁ _(ai'gi f2+Ku:)'”5}]|”‘ (19}

Next, omitting simple calculations of the integrals entering into (19), we present in the
Table which is a summary of calculated values of K for various scenarios.

65
Wide beam ¢ 5> |, ﬂ'{% ﬂs(za)) <1
x/f=0 x/f=+1
N -2 2y~
Ro>> a K - —uﬁ?[z‘?‘] K= '”“32[2;“ )
a
2Ry? = a? K=-0,387 K=-0382
7 =T N T
= s -V = = —— n—l."ﬁ
Ry<<a K —0,?(233) Q K 0'62(25’91}

Not repeating all the calculations, we next give an expression for the correlation
coefficient K for propagation along one and the same path (or out and back for

reciprocity of the outbound and return paths) of a spherical reference wave and an
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arbitrary wave beam. From the point of view of realization, this corresponds to
correction using either a point reference source (a beacon) or a field reflected from a
point "spike” on the target. We obtain from Egs.(10), (11), (14):

1 =
K = ~ja’:§(1 - g)*jdm%p,,(x, x&) cns[Z—? (1-&&] x
1] 1]

2 | =
X Exp[— ‘-"—;1 (ajy +2RZ(1 - .»;)lj]f {ja’f:(l - g)lj'dxx"d),,(x, x&) x
0 0

2

172
2 K X 2npl 2
X COS [2k (1-&<&lexp(-x°R;(1 - &) )J X (20)

1 % 2 1/2
X {j d&(1 - @zjdxr3d)"(x,x¢] cos’[%—f-{l - &)&lexp(—x’a’q? / 2)] :
0 0

Let us now consider in more detail in (19) the case of large apertures!®: Ry

commensurate with x,'. For practically any geometry of the reference wave, the

condition R, >> ,IJ'E using the model (17) leads to the following expression for K
K= —.RJ‘“‘E de(1 - &) dyy” — (d] +x;’ )]
X [ i di(1-E)? {(aiq* 12)" - (e /2 + x'f]“-""}], @
where dj; = (az; +2R;) /4. If the initial Gaussian beam is wide enough

: \6/5
[ﬁ >> L x =0, g(E)=1, ﬂ‘:‘[% D,(Za}] <<l a, = a] g

then we arrive at the form

g=-B n;rs[[m: rd )" (rd )] @)
-2 - 4 ) Tk 4 )

/| : = 152

")

/N2 TN

For 2R} =d’
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K= ,.; R]Ué[] _([ B B_;)-UE]

where B =x R, . Insummary, we can draw the following conclusions:

« for small apertures (B <<1)

3
Bt
2 5

and the largest possible correlation is realized;
e for =05

P :33- (1 - 0.76)"” ~ —049 *23 ,

and the correlation falls to half~-maximum;

o for B>>1

1
zlﬂﬁ ¥

and correlation is almost completely absent. Finally, it should be noted that a high

=

level of correlation remains only for apertures R < 05x,".

Thus, for all cases of practical interest it is possible to estimate the mutual
correlation K. Let us consider the control algorithm for correction of p., the random
displacements of the center of gravity of the beam, on the basis of measurements of p.p,
the displacements of the center of gravity of the image in the focal plane of the optical

system. One can easily convince oneself that the control algorithm can be dnven by

the signal {:%pd(al /2R: )-u&’ wiere o is the feedback coupling coefficient, chosen

from the condition of minimization of the functional
2 (23)

[ o2 a1 2]

\
The magnitude of the functional (23) for fixed a characterizes the residual distortions

associated with the random displacements of the optical beam. As is clear, for example,

from the Table, for such correction the variance of the residual distortions associated
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with the random displacements of the beam center of gravity stands at roughly 25% of
its value in the absence of correction.

In light of the above calculations, it is safe to recommend the following optical
system (see Fig.1) working in the atmosphere, which tracks the random wander of the
beam center of gravity. A spherical mirror with its central part removed and replaced
by a long-focal-length lens serves as the transmitting mirror that forms the optical
beam. The displacements of the image center of gravity are registered in the focal
plane of this lens using some kind of measuring device. The signal from this device,

which is proportional to the components of the random displacement of the focal spot

Py = {_}-‘rp,zt}-}. is fed to a signal processing system for processing the angular

displacements y, / F,z,/F. This information is then used to vary the

instantaneous direction of the beam axis.

In this approach the system can process both displacements of the image of some
reference source and radiation reflected by an illuminated object. Here mention should
be made of the fundamental possibility of using radiation backscattered by the
atmospheric aerosol.

Such an adaptive correction system does not require a phase distortion analyzer;
instead, it requires an intensity distmbution analyzer, but one with sufficient dynamic
range and sufficient frequency range.

The above analysis assumes that the transmitting and measuring channels are
coaxial, while a more realistic approach would be to treat the transmitting and
measuring channels as having different apertures with the axes of the transmitted and
received beams separated in space ov tilted one with respect to the other by some angle.
For parallel offset of the two beam axes, the correlation falls substantially at distancess.1

of the order of x;'. If image quality is what matters, then the relative tilt of the beam

axes in the transmitting and measuring channels should not exceed the isoplanatism
angle [16] , which is defined as the maximum angular separation of two point objects
which can be (simultaneously) clearly distinguished when looking through the turbulent
medium.

Thus, the given approach allows one to minimize broadening of an optical beam

due to random wander of its center of gravity. It should also be noted that because of
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the weak selectivity of X, (p;}} and (Pc): the transmitting and measuring channels can
operate in different wavelength ranges.

Since any system processing random mirror tilts possesses a finite response time
(the time constant 1), the degree of correlation K will differ from the value calculated
according to formula (4). In general, the degree of correlation K is a function of the

response time 1

K(x) = (pspr ()| 2 o2 )] (24)

Not repeating the calculations, which are analogous to the foregoing, we obtain thc

following expression for K(t) under the conditions:

an >> i, max{ﬂ?(ﬁ), Rm ﬂ} << Kt.}l! C:{If_‘} = C:!
Ko(XE) =x,, V(OE)=vV

1. 1712 2 7 -1f6 2 3
o /6 R @ gl W
) R“ [ ) (z +4) & (6’1‘ 2{R§+a’/1}]' 2

in a wide (Q sl oxf f= ﬂ} collimated beam. K attains its maximum value at

2R! = a*, where

2.2
K(r) = —03711’.”’(1, o t,)-

6 2a° (26)

and for t = 0 (instantaneous processing) K(0) = -0.87, while for larger t(vr / @ >> 1)

-1/6
vt
K(z) = -(}94[;] : 26)

As can be seen from (23), a sufficiently high correction efficiency is achieved under the
condition

T < ajv,
where a is the initial beam diameter and v is the mean wind speed. Thus, for aperture
a<] m and mean wind speed v=3-5m/s, sufficient efficiency of processing

requires that the time constant of the system not exceed 0.02s.
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The relative decrease of the mean diameter of the image formed by the beam with
and without correction can serve as a criterion of the quality of correction for the
correction algorithm developed here.
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CHAPTER 4. IMPROVEMENT OF THE QUALITY OF AN IMAGE FORMED THROUGH THE
ATMOSPHERE BY METHODS OF ADAPTIVE OPTICS

Here we describe the possibilities of improving the quality of images formed by
an adaptive optical system through the atmosphere. To correct the image of a star
formed by a telescope, mainly two approaches are used: one based on measurements of
reference source fields and one based on maximization of the sharpness functional.

In this chapter we will consider correction realized by an adaptive optical system
functioning as a system with feedback utilizing information about the instantaneous
distribution of the inhomogeneities of the medium in which the propagation takes
place. We will make use of algorithms of adaptive control based on the reciprocity

principle.
4.1. Adaptive Correction of the Image of an Extended Object

This part of our consideration is based on the paper [Ref.1, 1983]. The quality of
the image of an extended object, formed by an optical system through the turbulent
atmosphere, can be improved with the help of adaptive correction. To do this,
information about the distribution of the turbulent inhomogeneities of the medium
along the propagation path is extracted from measurements of reference source fields.

A reference source, as an object with a known amplitude-phase distribution,
located at a known distance from the receiver, can be formed directly on the surface of
the object being imaged, or it can be located at infinity (a reference star), or, finally, it

can be located between the object and the objective.

Let the extended object lie in the plane X, the point reference source in the
plane X, and let the entrance aperture of the telescope be located in the plane X .
The distribution of the field U ,; of the extended object, formed in the x, plane, is

given by
U(x,p) = [] d°pU 4P )G (X, 03 X 21 - (1)

G(x, p; X, p) 1s the Green's function of the turbulent atmosphere between the planes

x, and X, . We will denote the entrance aperture of the telescope as W(p), and we
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will replace the action of the telescope by an equivalent lens introducing the phase term
exp(—ikp® /2f), where f is the equivalent focal length of the telescope.

We assume that the correction is based on the phase conjugation algorithm using
measurements of the phase of the wave from the reference source. In this regard, if the
reference source is so small or so far away that it is not resolved by the optical system
of the telescope, it can be treated as a point source. The phase of the wave (with wave

number k = 2n / A) from the reference source in the entrance aperture plane X, can

be written as

kp®
P == — + 8(x; 05 X 0), 2
S (XgsP) 2y %) + 8(x5, P X, 0) (2)

where S(x;, p; X, 0) is the random phase due to turbulence of a spherical wave as it

propagates from the X . plane to the x_ plane. We assume that the point source is

located on the optical axis of the telescope. This means that the conditions of the
experiment allow us to form the reference source on the same optical axis as that on
which the object is located. Here we are not discussing techniques for forming reference
sources.

There are a great number of techniques for separating out the diffraction phase

kp® / 2(x,, — x,) from S(x;,pix, 0) in expression (2). With the purely turbulent

contribution to the phase of the reference source (2) thus available to us, we can solve
the correction problem using either the phase conjugation (PC) algorithm or the total
phase conjugation (TPC) algorithm.

The TPC algorithm uses the total phase (2) to correct the wave front and
because of this forms a beam of arbitrary geometry only in the plane of the reference
source. If we succeed in whatever way in separating the diffraction phase from the
turbulent phase in (2), we can apply the PC algorithm for the .purpose of beam
formation in an arbitrary plane (different from the plane of the reference source), or for

image correction. Here, however, it is necessary that the turbulence-induced phase of

the reference source measured in the X, plane practically coincide with the phase of the

object field over the entire path to the object.
This can be realized, for example, along slant paths, where the turbulent intensity

i : (h) decreases with height /i. The reference source upon which the experimental
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scheme in question is based should be located somewhat higher than the effective layer

of atinosph:ric turbulence H o7+ and the choice of its location is governed by the
condition

[ diC2 ()~ [ diC2(h)
Hg Hy

<g

- ]

J dhC2 (h)
H,
where ¢ is determined by the admissible level of residual distortions in the optical wave
in which the aberration-free image is being formed. - Here it is assumed that the object
is located practically at infinity, i.e., outside the atmosphere. H, is the height of the
entrance aperture of the telescope.
Let us consider the phase-conjugation algorithm (PC) in detail, employing it
only within the limits of the aperture W (0). Then the corrected field is written as

G (%55 Xy ,0)

2 _ . X
G, (X, 5 X, ,0) [[d*pU. ()G (6, p3 Xy 1) (3

U.(x,p)=Wip)

The ratio G'(X,,p;X,,.0) / Gy (xy, p; X,,0) is called the correction function. The
corrected field in the image plane of the object X ;&J is formed in the same way as in a

"thin lens":
U, (xlysp) = [ dp,U (X, ) xp(=ikp3 / 21)G(x00 3 %0s2) - (4)

Here it is assumed that the image is formed in vacuum in the optical system of the
telescope. Adding quantities (3) and (4). we

U,.(x,p) = [[ dpd’r.W (p,) exp(=ike| / 2f)Go(xly, 05 %0 ) X

x U (1)G (X5 s X, 0)G (X5 B3 Xy ) / G (X5, 913 X,r.0)
As a result, if the ratio

G (i Xy 0) / Gy 9 X 0) = EXP(—iS(xy, P13 %y 0))

(3)

then the average intensity distribution in the image plane X' is equal to




s = (=3

(1 (X' oy s P)) = [[ d*py1d*r , exp(=ik(p; — p3) / 2/ W (p))
x W(H}Gn(xmﬁ;x*m sP}G{;(-"mP&g;xtw :P)Uw(rz)ﬂ;g(f:)
x G (%505 s B )0, (s 115 X ]{exp{f([S(xo, A X,er:0)
~ 8% P X O)] = [S( %5, 013 X5 1) = S(%5: 915 Xs 12 DD
Here we have used the phase approximation for the Green's function expressed as
G=Gpexp(iS), where § is the random phase due to turbulence, calculated in the
geometric-optics approximation, and the angular brackets <...> indicate averaging over
the ensemble of turbulent fluctuations.
Below, for convenience, we will denote the expression standing inside the angular
brackets in expression (6) simply as <...>. In the calculation of <...> we will assume

that the fluctuations of the phase S are Gaussian, whence 1t follows that

< exp{- %— Ds[xu, B = P Xy _.0) - % Ds[xmpl = Py Xy Xy = rl)
+(S(%, 3 X,20) (X0, 45 X T, )
- {S(xﬂ, Py Xy ,U)S(xo, Pys Xoys B )} | | | (7)
= (8301 P13 X 0)S(Xe5 P35 Xy T3 )
+ (S(Xgs s X, 0)S( X5 25 Xs B s
where Dg(Xg,p, — py; X-T; — T2 ) is the phase structure function of two spherical waves
whose sources are separated by the displacement 1, —r1,, and whose observation
points, by the vector p —p,. Let us consider correlation functions of the type
{S(xu,p,;x,# ,O)S(xn,pi;xw,rl]} in more detail. Since the random phase in the

geometric-optics approximation can be represented in the form of an expansion

S(Iﬂ,p;xmr,ﬁ)=k:r£a'¢j_[dn(x,§)et I‘icp(— 5 )J, (8)

the given correlation can be written as




—_— —
- dd

| FE——

< S[xrq,p,}.g(xw,p,) S= kzjjfd?ﬂﬂ'{ dn{x . & )dn(x,.&,) >

9)
x ex I{KIH & + K, 5% ) ;
(Inf ‘-"’a) ix.-qf _xu)
Using the representation
< d"{":hﬁl)d"(“p E..z) >= 2“5&: = 51)5(“1 * Kz)q)n(‘cn §1)di"ld1xn
we can transform expression (9) into the following form:
T STy d*x @D (x,
< S(X,s 11 )S(xsys ) >= 20K7 | ([ & ®,(x,F)
X
; - _p| Ft =S
x exp{mﬁf(xw xu{ﬂ pl[xw _xo)j”s
where @, (x,&) is the spectral density of the refractive index fluctuations.
Thus, in the geometric-optics approximation
(s Py X 0)S (3 225 X1, ) >
X =X (10)
= Bﬁ[xu,g —~ p,;xmr,(xz - x:)]
Now, taking (10) into account, we bring (7) into the form
1
<> tﬂp{— %Ds(xmn. =253y :0) = 5 Ds(X0, 2 = Pri Xays Ty — )
1 Xor — %
= Eﬂs[xmﬂ; x,g:r{x: _xtJJ
f r
afan-wr)
=D B=PaX Tl ———— {11]
"'2 s\xu P~ Py Xy lk-xuq“xn

' r
1 . Xy
ED“\x"’p‘ p”x’*’rﬂxw-xo)]

1 g X =X,
sz
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Making use of the representation of the Green's function in free space, we can
rewrite expression (6) as
e(esr0) -
(Lax'0)) = g

165°(x ~ ) (- %)
i3
x U (R) exp{— ik -(H P) + ik (o =)’

2f 2(xn x'#)

(r (r; - ]
Yx, - x'wj e (xﬂﬂ —pl.x)tﬂi rkﬂx F,.'xﬂ,)

Let us first consider the diffraction terms in expression (12), which condition the

I Jl d4pi,z d'n, W(Pi) W-(F'z}

(12)

formation of the image in vacuum. We choose as the image plane the x' plane, which
1s the plane conjugate to the x  plane. From the condition for conjugate planes we

have
V(% - X') - Y(x - %) =1/f (13)
and since (Xx,, —X,)>> f,x, - x',,, we arrive at the conclusion that
1,-'(.1',, - x'm,) alf
Consequently, remote objects are practically always imaged at the focus. On the basis
of this result it is possible to simplify the diffraction terms in expression (12). It then

follows that in vacuum the intensity distribution in the focal plane has the following

form:
k#

I(f: P) = 16?E1f2(xw = Ia)l H dipz.zd‘ruw(ﬁ)w-{ﬁ)ym(rl)

x U’ (r ] EXD{— ik I:'(F"I pﬂr) [( ) (I'; - pl) ]} (14)
’ f

Axy - xﬂ)

If we assume a Gaussian object U, (r) = E:xp(— r 2-"20@,) (a, is the effective radius of

the object), we have

(15)
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where Q,, =kal, /(x, — x,).

Let us turn to the case of image correction. Here it should be noted that there is
one term (the second) in the exponent in expression (11) that determines the
fluctuations in a system without correction, which depends on the integration over the
entire path from the object to the telescope; the remaining terms are associated with
correction. In the calculations we use the following expression for the phase structure

function:

Ds(x,p = pit, —1,) = 2.9|k=jdgc,(g).{{i - f]) (0 -p2)
(16)

53

(r,-r)

(x-¢)
+ ks .‘.
(x - x)
The refractive index structure characteristic in the integrand in (16) depénds on the
integration variable, namely the distance covered along the propagation path.

‘Let us consider the case of vertical propagation (telescope pointed at zenith). In
the calculations we allow for the altitude dependence of C!. This dependence is

realized in practice in the form of various models.
Let us carry out an estimate based on the following model:
Cxln)™; xSxdx,

Ci(x/ x:)'m', X5 X,

C(x) = (17)

where C’; is the value of the structure characteristic at the initial altitude, x, 1s the
altitude at which the 2/3-power dependence goes over to the 4/3-power dependence,
and C; =C,(x, /x,). Thus, this model is defined by the parameters X, and C;.

In the calculations connected with formula (11) we require that X, X, > X,.

59




:’"‘“:’”_‘”'_""'_lr—ir_Wr—T!

Substituting expression (16) into formula (11), after combining like terms we h

<D= exp{- 146K°[r, — 1, (3, = x,) f (e -x)"C(e)de

Ty

i3 . f
- 146K —p"(xy %) 7 [ (x4 -8) ClE)E  18)

S B 53 3 50
- 146k%p -, | [*"‘-ﬁ_ﬁ) _[:5.,_&] C2(2)de}.

Xy =% X — Xg
Here note that 1, and r, are the integration variables over the object, and p, and p, ,
over the aperture of the telescope. Analysis of expression (18) reveals that the term
containing r; — r, " (the object variables) is the same as in the absence ‘of correction.

It is just this term that is determined by the action of the so-called non-isoplanatism of
the atmosphere.

This parameter is connected with the problem of constructing the image of an
extended object. There are two terms in expression (18) containing |p, -p,|m (the

variables of the entrance aperture of the telescope), one of which is determined by
inhomogeneities in the region between the reference source and the object (this part
remains uncompensated since the reference source is located closer than the object to
the objective), and the other, by the inhomogeneities between the objective and the
reference source (its presence is due to the inequality of the curvature of the spherical
waves arriving from the reference source and from the object plane).

It is clear that for model (17) the altitude region corresponding to the 2/3 power
gives the greatest contribution, and for this reason it is always necessary to choose

X, > X,. In this regard, all the integrals in expression (18) can be divided into two

-
parts:

Tal) =)+ T 5
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If the 2/3-power region of spectrum (17) is absent, then the first term in (19) is equal
to zero. Substituting model (17) into (18), we arrive at the formula

273 2
< .= Exp{- 1.46k’-r,-r,, [IIC’ X [—x ]

6 x5

w L .
+ 3¢ [ x (% %)’ ]]- 146k%p —p,™ §C';x§“

4 "\x° x5 4 (20)

x: P Xy 2 a2 43f 13 -3
K[E‘r };J—lﬂﬁk A= P 3C“1[I, (x, '-Im-)

53
-x(1-x/x,) ]}
Now let us consider each of the terms in (20) separately. First, let us turn our

. « u 50 . A
attention to the term containing r, —r, . [t determines what objects can be seen

clearly and in their entirety in the objective at a given level of turbulence along the
path, and does not undergo any change upon correction. Consequently, correction
with one reference source does not remove the problem of non-isoplanatism, and for

correction of the image of a large object it is necessary to form several reference

sources. In order to be able to calculate further, we introduce the quantity r,, the

radius of the isoplanar region, as follows:

23 i :
146k, -1, 5”[-161 5 M+ 2 G2 0
Xo (21)

-2, %) (x| =k -5 2
In this context, we say that the objeet is located in the isoplanar region if a, <7,
The quantity r, has a simple physical meaning. From formula (21), taking into
account only the first (and main) term, we have

o= (268 (%, - %))

“ x-x)
or
p (sl -x)")
Xl (% - x)
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Thus it turns out that the region of isoplanatism in the object plane is discernible
from a distance equal to the range of the object at the same angle at which the

coherence radius of the layer of atmosphere is discernible through this layer. Let us

; . 53
consider the term containing p —p, :

afd B oA :
1467, — Pz.ﬂ{ 4 G’ (X" = x%) %y +CL [,

Vs 13 33
% (l - X, _.fx,ﬁi) - x,(l - x,;x,u,) ]}
Note that for x, >> x; this term reduces to

1.46 - i Klp - p s'jCix§'3 2.

Let us compare it with the same term in the case of no correction:

2 a2 s
7-146k%p —py| C X5 X, -

(22)

The action of correction is characterized by a relative decrease of the fluctuations

proportional to x,/x,,. Term (22) can be represented in analogy with the phase

: : . 33 | s .
structure function in the absence of correction  as |p —p,| ;'.rf; , where r, is the

effective coherence radius.
Summing up all these results, we obtain the following expression for an object

having Gaussian shape:

lﬁﬂifzgri ‘_":aT [[d*p . W(p)W " (p.) =

% cx;:{— ik p{p'; p) +ik (e P ))}ﬂ d*r, exp{— 2_2"5_ x

<I(f,p)>=

Axy —% i
. SN r .
x (1 - ﬂﬁ) — ik (xﬂ;g Jq,) =. 2;:# (1 + IQI#) +

(23)

E I- &3 7 gn 1 a3 [ en
+ ik zP;x -l [P =lp=-pl [ty }
— M

which can be compared with the diffraction-limited result (12). Calculating out the
diffraction integral gives the following results:
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H d’r( )= 2-ra (l — )exp{— kpIQ #,*"[Z(Iw - xﬂxl - :'ﬂ#]]},

for a circular aperture

L p=R,
W(p)’{u, o> R,
ﬂdrp.W(p,)exp{—pI[z( _x) [I? ] Z(xk—xo)]_
KXoy w aly
(2
_iPPloap NS T Q[ Qi
ik f} R [ngJ =R 4 [1+ﬂ?J
2f
. EoR)., _ kR
F(213 4f ]H (*_xo)

Finally we arrive at following expression for Q, < Q.

KR, JE[@)_ Q,0.,, _"'[Effﬁ )
w31 +Q,) (kP_R): 41+, [M}
J f

k! 2 RJ ! k! 2 RI
, f;(z;u; 4'}2 J+ A+ )" F’(ZH ]}
for the case when the image of a Gaussian object is formed in the telescope in the

absence of turbulence.
In order to carry out the corresponding calculations in (23) without using a

Iu(p) -

(24)

computer, we use the quadratic approximation. We introduce the optical transfer

function < 1(F) > for the system atmosphere-telescope

1(f.0) = é}_ﬂ (e <t{r) > expl—ikr o/ ). (25)

After some simple calculations we arrive at the formula
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2 2
<1(r) >= 2 [_ - kr’

(70, 40 ) | B E-n)"

(1 +4 2
i +4[nm,e?z +?11))}ﬂd xW(x + 1 2)W (x - r/2) x

S : Qg - O BB
(xw _xu) 1+4Q . /Q, +ﬁ§;) ik 4(_,(” = xﬂ) 2
(I+4ﬂ 0 ) o
(l +4ﬂ ﬂ + P ) 3 nﬂ = kr a/ (x.q - xﬁ).

Calculating further for the optical transfer function < 1:(?) > for a Gaussian aperture
W (x) = exp(— x */2R?), we obtain

Rzﬂ: F
sy “(1+40 /0, +n,nd,+n= )exp{ el
Q,9,(1+40,/Q,)

48
T O (I+4n /0, +ﬂz’)+ e
Qj(1+4Q ,/Q.)
(1+4ﬂ /Q, + QL N1+4Q ,/Q, + Q% +Q,9,) |[
If the beam is propagating through vacuum, we have the following expression:
t() Rzﬂz K_.i"2 1+ﬂﬂ
; (1+ﬂﬂ +QE) 4R | (1+9, 1
(27)

" 2
(1+ Q%) +(1+ 9., +O%)
for the optical transfer function of a telescope imaging a Gaussian beam. Let us
analyze the case  (Q%NQ .4/Q,,Q,NLQ, > Q) in detail. From (26) and (27)

we have
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; ? 140
(to(r)) = 15(r) exp{— 4;1 [ﬂj + 4§" +

a

5 28
- [l+4ﬂﬁ;‘ﬂn)‘ - @8
o

Thus, the optical transfer function (28) depends substantially on the ratio of the
entrance radius of the telescope to the effective coherence radius (ﬂ 2/Qg =R J;‘r,}) ;
and of the radius of the object to the radius of the isoplanatism zone
(Q w /R, =0 :‘,, ,.-"r:) . and also on combinations of these parameters. If the conditions
Qp <Qu, Qyy<Q, ., and Q,<Q, are fulfilled, i.e.: if the object occupies one
isoplanar zone, then the effective coherence radius exceeds the radius of the entrance
aperture and the falloff scale of <+t(F)> coincides with the falloff scale of t,(r). It is
easy to see that for a plane wave (ﬂﬁ, —>=¢] the Fourier transform of (27), analogous

to (25), is written as

I _k:R‘ _kl }R}- 2
o(p) = 7 exp(- k'R 7/ f?) (29)

Both for a Gaussian and a circular aperture (26) in vacuum the intensity distribution of

the image is substantially decreased at distances p = f /kR. Correspondingly, the scale
of the optical transfer function 7,(r) is equal to the radius of the entrance aperture of

the telescope R. Transforming (28). we have

_ L a0y a0 ok 2 4 J
< t(r) >=1,(r) exp{ i [4 o e SQL a0, - o -

a

= 2o(r) expf-r*(1/rg + 12},

2 n QE
1.(r) = nR” ex ~—r~—|il+—‘+—3}}=
()= nk el 1 B
2 r
= ?ER' Exp{- ﬁ(l + ﬂ R ﬂ#)}

We renormalize t,(r) as in Reft287 [‘E{,[ﬂ]=l].

where

(31)
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Employing the optical transfer function introduced in this way, we can calculate
one of the functions which determine the quality of the combined optical system
atmosphere-telescope, namely the resolution

R = [[d'x <1(x)>, (32)
where x=kr/f is the spatial frequency. Integrating over the spatial frequencies

directly in expression (26), we obtain

R =

N EKFEQ:#RI_{J 1 t+4&+ﬂnﬁw(l+4ﬂ‘wfﬂ¢J
(F+40, /0, v, 1 m0,) 0l (ir0.,/0, s 05)
+ (1440 ,/Q,)/[(1+49 /0, + QL)

< (1440 /0, + 0,0, + )

(33)
The resolution %, as a measure of the optical quality of the system, determines the

magnitude of the minimal resolvable distance &/ = 5 lﬁ The optical system has its

maximum resolution in vacuum, and it is determined by the parameters R, A, and f

for a planar wavefront:

U L
2.2zkR"

In a turbulent medium the limiting resolution (the minimum value of &/) for an

8l

arbitrarily large telescope (the limit R — =) is determined by the coherence radius r,:

f
Blapes—~ =) R. 34
= 2\ 2nkr, b G

It is just this circumstance that lowers the efficiency of large telescopes. Practically

speaking, R = 2r, represents the limit of resolution for large telescopes. Application of
adaptive correction to a telescope increases its limiting resolution. Applying (33) to the

case Q, >> Qg Q. >>1, we obtain

sagirfl s L 4 2
R =2zk” [f [Rz +!:;r +rfﬂ. (35)

Consequently, the resolution is determined by the minimal value of the radius of the

telescope R, the effective coherence radius r, , and the radius of isoplanatism r, . For
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given telescope radius and height of the object -- and it is the latter which determines
the isoplanatism angle (and the isoplanatism radius r, ), it is possible, by appropriate

choice of the location of the reference source x .-+ 1O INCrease o s If we locate the
reference source on the object itself (in practice this means 7., =), we have

R = 2nk ? [ f{ }%3 + ;J] (36)

In this case the resolution of the system in the object plane is limited by the radius of
the isoplanatism region r, . From (35) we have

N A\
8l = f ]+4f +4_'§~ .

2.2x kR ry 7
1.e., the objective of the telescope becomes diffraction-limited under the condition that
R<r, R< Iy 1T one of these conditions is not met, the quality of the optical system

15 decreased. For all intents, in this case, the radius of an objective having limiting

efficiency
1 I 2
R = 2 L_‘;— + ?'_2:[ 3 (37)

and for the reference source on the object [.";ﬂr = -:c:)

R 22r. (38)
We find that by choosing the position of the reference source we can change the radius
of the aperture that gives maximum efficiency (37) all the way to the limit R (38).

In conclusion we can state that an adaptive optical system working in the
atmosphere using a reference source can achieve a substantially increased efficiency.
The choice of the height of the reference source is determined both by the form of the
profile C. along the propagation path and by the level of permissible residual
distortions. The optical system forms an aberration-free image only of one isoplanar
region. If the angular dimensions of the object exceed this region, then using only one
reference source it is not possible to obtain a diffraction-limited image. The dimension
of this isoplanar region depends linearly on the distance, and the isoplanatism angle
(the ratio of the radius of the object to the distance from the observation plane to the

object) coincides with the angle at which the coherence radius of the atmosphere is
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discernible within the limits of the effective laver from a distance equal to the thickness
of this layer. The efficiency of the optical device from the point of view of its
resolution can by the appropriate choice of the location of the reference source be
brought up to its limiting level, determined by the radius of the isoplanar region, and,
consequently, starting at heights for which r.>R, we have diffraction-limited
resolution.

By virtue of reciprocity [2-4] (of the fluctuations) these results carry over to the
problem of focusing an optical beam through the atmosphere with the help of a
reference source. If the problem is one of focusing optical radiation in the plane of the
reference source, the total phase conjugation (TPC) algorithm can be brought .to bear,
making use of the entire phase (2), and the initial beam must be collimated. The
interesting situation arises in which the wavelengths of the formed beam and the

reference source do not coincide (let &, be the wavelength of the reference beam and
A, be that of the beam formed through the atmosphere). Then the plane of optimal
focusing (for an initial collimated beam) X is related to the position of the plane

of the reference source as follows:
kl '@2

X =Xy Xgo =X

ref
And in order to focus the beam in the plane of the reference source, additional focusing

18 necessary, with radius of curvature

5 }L,(x,g, - xﬂ)
Gl = e

4.2. Improvement of the Quality of the Image of a Star by Tracking

In this section we investigate some characteristics of a telescope whose aperture
tracks the random angular displacements of the optical radiation impinging upon it.
Here it should be noted [3,4] that because of the complexity of control of multi-
element adaptive correctors under actual conditions of the turbulent atmosphere,
realization in practice of adaptive systems in observational astronomy runs up against

serious technical difficulties. For this reason, correction algorithms of the simplest
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type, correcting, for example, the total tilt of the wavefront impinging upon the
aperture of the telescope, are of special importance.

From experience it is well known that the image of a star in a small telescope
(resolution 3-4") presents an almost undistorted picture, but which jitters strongly with
frequencies from (1-2) to (10-20)Hz over its entire extent. At the telescope objective
diameters of 100-150cm, the image of the star looks like an immobile, smeared out
disk. Consequently, only in small telescopes, in which -- in contrast to large ones --
the main distorting factor is image jitter, not smearing as in the latter, improvement of
the quality of the image can be achieved by tracking the slopes of the impinging wave
front.

We will estimate the improvement in image quality for such correction on the basis
of transfer functions of the system atmosphere-telescope. By definition, the transfer

function of such a system is
tf) = Bf[ d’xU(x)U"(x) exp(i2xfx), (1)
where B is chosen such that 1[0} =1, T is the spatial frequency vector, the amplitude of

the image in the focal plane of a "thin" lens is equal to

U(x) = Aff v U(v)exp( - 2% vx), @)

A is a normalization constant, X is the wavelength of the radiation, F is the focal
length of the lens, and U [v} is the wave field incident upon the lens. When estimating

the quality of the image, one often uses the averaged transfer function < 1[f) > for

which the averaging time (or ensemble), as was shown in Ref5, is of fundamental
importance. In general, it is necessary to consider the averaging time as a parameter;

however, for practical purposes one distinguishes two limiting cases: short and long

exposure. In the latter case, the averaging oft(f) is carried out over the entire
ensemble of fluctuations of the field U (v) An exposure is considered to be short if the

averaging time is such that of the phase fluctuations taking place in the field U (v)

incident on the receiver aperture of the telescope, random tilts of the wave front as a

whole are excluded.
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In this case, in place of the function @®{v) characterizing the phase fluctuations of
the field U(v), one uses the function ®(v)=®(v)-av, where @ is a random vector

connected with ®(v) in such a way that av optimally coincides with ®(v) in the

sense of the mean square difference over the aperture, i.e.,
d 2
% ] dszV{v][fb(v) ~ av] = (),

where a are the components of a. As was shown in Ref. 6, for symmetric apertures

[W(v) = W[v)] we have

a = ([ W () ofv) v/ <] aww (v)).
/ 0
In the notation of Ref.5 we have for long exposure
(1)), = %(f) exp(- 344 (F £/r,)"), 3)

and for short exposure in the near zone (D >> E)

(M), =wo(f)exel-344 (uF £/n)”] {1~ (2F £/D)}. ¥

Here f is the spatial frequency, D is the diameter of the objective, 7, is the
coherence radius, defined by the relation

D,(r)= 6.88(1*_-';;,}5'5*
where D,(r) is the structure function of the complex phase and L is the distance

traversed in the medium. [t can be shown that since the radiation from the star

armiving at the turbulent layer 1s a plane wave, the parameter », is given by
35

=~ 2.1(1.45k1fdhcj(h)] , (5)

where k=2xn/A and J'dh CZ(h) is the integrated turbulence profile.
Using <r{f }) we can write out the overall resolution of the optical system

atmosphere-telescope
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R = [[d*f((f), (6)
In Ref. 5, by analyzing the behavior of the function ®. calculated using formulas (3)

and (4), it was found that one obtains a higher-quality image with a short exposure
than with a long exposure. On the basis of the data of Ref 5, one can calculate this
relative improvement (under tip-tilt correction) of the image quality A, as a function of
the dimensionless parameter D/r, (Fig. 3).
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Fig. 3. Image quality A, as a function of the dimensionless parameter Djr, .

From the figure it can be seen that the so-called “limiting resolution”
R =—(ru [AF )1? obtaining for long exposure, can be exceeded by a factor of more

than 4.3 by going from a long exposure to a short one.

However, when observing faint stars one cannot use short exposures, and,
consequently, improvement of image quality can be achieved only by tracking the
random tilts of the armving wave front. In this case, as can be easily seen,
improvement of image quality is also characterized by the curve in Fig. 3.

In connection with the above, the parameter r, , which characterizes the degree of
atmospheric turbulence, acquires special importance for estimating "seeing” through the
atmosphere. There are a significant number of publications dedicated to measuring the

magnitude of the coherence radius r, by astronomical methods. It is of interest to

analyze the results of these efforts.
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Thus, in Ref. 7 on the basis of nighttime astronomical measurements for
A =055 wm observing at zenith, a median value of r, 'was obtained equal to 11.4cm

with standard deviation 36%. From the results of 24 nights of viewing, the authors of
Ref.8 obtained values of , within the range 5.3 to 17.8cm with mean value 9.6cm for

A=05wn. Ref9 gives values of », in the interval 4-15cm. The authors of Ref.10
obtained r,=I0cm from measurements of the Polar Star. The most consistent
measurements of r, were carried out by the authors of Ref.11, who carried out

measurements on three mountain tops in New Mexico simultaneously. They obtained a

nighttime value of r, =9.044.0 cm and a daytime value of r, =45+ 18 cm.
Summarizing these results, we conclude that the coherence radius r, at A=0.5uwn

for the vertical column of atmosphere reaches 10cm in the nighttime and two times less
under daytime conditions. Consequently, the optimal diameter of the aperture, i.e., the
value for which correction of random tilts of the wave front over the entire aperture is
effective, is about 40cm during the nighttime and around 20cm during the day.

At the same time, the magnitude of r, is closely connected with the model of the

altitude profile of the refractive index structure parameter. Therefore, measurements of

r, -(Refs. 7, 10, 8, 11, 9) can serve as valuable material for checking the utility of

i

various models of the altitude profile of the structure characteristic €. Thus, in Ref.13

on the basis of the model of Ref.14 it was found that typical nighttime values of 7,

should exceed 10cm (l =05 um) For the conditions of the Mount Palomar observatory
from the same model the authors of Ref.15 obtained a mean value of r,=13em. These
values of r, are somewhat higher than those reached experimentally. Referencel6
generalizes extensive material describing the behavior of the altitude profile of the
temperature structure parameter (.  over the steppe. The results of this study are

approximated by the dependence

¥,;(6) =464-10°* +06 expl-12(e - 11)°] )
where E=h/hE, h is the altitude above the underlying surface, A% is the thickness of
the boundary layer, and "-P‘C;(E,)zi‘; (¢)/Ci(01) . Thus, the model of Ref.16 is

prescribed by two parameters: h£  and C7(0.1). To estimate the parameter r, at
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zenith (6}:&"}, it is necessary to calculate J‘:ﬂ:f?,f{ﬁ], where A, is the height of the
A

entrance aperture of the telescope above the underlying surface. At the wavelength
A=05wn, under average meteorological conditions, C;=069-10°C7. If we take
h, =001k , we obtain

IC‘:(&)JIJ = 051-10"2C2(0.1)AE,

in which case
R = 21(L1-102C3(0.1)hE) .

If we use the characteristic values of A and 7 , we find that r varies within the

range from 3.4 to 10.4cm for daytime conditions, with an average value of - 6.8cm.

This is somewhat higher than the median values of r, from the direct measurements:

however, it should be noted that the model of Ref 16 was based on measurements over
the steppe, while the measurements of Refs.12, 7, and 11 were carried out atop high
mountain peaks.

For telescopes correcting random wave front tilts, the parameter 7, can be taken as

the radius of the isoplanar region. By isoplanar region here we mean that portion of
the atmosphere over which the optical transfer function is constant. The radius of this
region is inversely proportional to the height of the turbulent layers causing the
atmospheric phase distortions. The isoplanatism angle associated with the dimension of
this region determines the maximum angular separation of two stars which can be
observed with identical sharpress through a telescope. This same angle determines that
portion of the sky which the tracking system can service while processing random tilts
and working with one star.

A number of measurements of liic isoplanatism angle have been carried out. Thus,
the authors of Ref.10 obtained an isoplanatism angle of 4,7" from measurements made
with a telescope with a 1.57m-diameter objective. The authors of Ref.17 obtained an
isoplanatism angle of 4"-10" from measurements made with the Mount Wilson
telescope. If we assume that all of the turbulence is concentrated within a narrow layer
at some altitude, then these latter measurements correspond to the presence of a
turbulent layer in the altitude range 1.1-1.7km. In the model of Ref.16, the turbulent

inhomogeneities are distributed continuously; however, within the limits of the altitude
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A% there are local maxima. We will attempt to estimate the isoplanatism angle O,
from the formula ©, =r /A% . The data of Ref.16 give ©, ~4"-17". Disregard of the
distributedness of the turbulent inhomogeneities naturally leads to exaggerated values of

©, ;: however, they are quite near to the experimental values.

Finally, let us consider some characteristics of a telescope with random tilt
correction. The effective diameter of the objective of such a telescope exceeds the
effective diameter of a telescope without correction by roughly a factor of 3.5. In this
case, the resolution is improved by a factor of 4.3.

It is well known that the characteristics of a telescope viewing through the
atmosphere enjoy reciprocity whether we use it to construct an image or use it as a
transmitter. Therefore it is possible to decrease the distortions of the transmitted signal
by measuring the fluctuations in the image of some auxiliary source. In this case, the
random displacements of the center of gravity of the image of a point object -- a star --
are tracked in the focal plane of the telescope, and this signal is then used to control
the transmitted radiation, and in this way one can decrease the average diameter of the
transmitted wave beam. As was shown in Refs.4, 5 the vanance of the random
displacements of the energetic center of gravity of the optical beam can be decreased by
a factor of four in this way. It is necessary only that the angle between the line of sight
to the reference star and the average direction of the transmitted radiation not exceed
the isoplanatism angle (around 107’-15") in the visible range. .

In conclusion, it is necessary to emphasize the importance of measurements of the

parameters », and ©_ , and also the need to confirm the applicability of various

models of the altitude profile of atmosphernic turbulence.

74




[ |

References to Chapter 4.

. Lukin V.P., Matyuchin V.F., An Adaptive Image Correction, Kvantovaia
Elektronika, V.10, No.12, pp.2465-2473, 1983 [Sov.J.Quantum Electron., V.13,
No.12, pp.1604-1610, 1983].

2. Lukin V.P., Chamnotskii M.L., The Reciprocity Principle and Adaptive Control of

Optical Radiation Parameters, Kvantovaia Elektronika, 9, No.5, pp.952-958, 1982

[Sov.J.Quantum Electron. 12, No.5 , pp.602-606, 1982).

V.P.Lukin, Atmosfernaia adaptivnaia optika. Novosibirsk: Nauka, 1986, 248p.

V.P.Lukin, Atmospheric Adaptive Oprics, SPIE Press Volume PM 23, 1996.

D.L.Fried, J.Opt.Soc.Am.67, No.3, 370-375(1977).

R.F.Lutomirski, W.L.Woodie, and R.G.Buser, Applied Optics 16, No.3, 665(1977).

D.L.Fried, G.E.Mevers, Applied Optics 13, No.11, 2620(1984).

M.G.Miller and Zieske, J.Opt.Soc.Am.67, No.12, 1680-1685(1980).

D.L.Walter and K.E.Kunkel, J.Opt.Soc.Am.71, No.4, 397-405(1981).

10. D.L.Walter, J.Opt.Soc.Am.71, No.4, 406-409(1981).

11. D.L.Walter, D.L.Favier, and 1.R.Hanis, J.Opt.Soc.Am.69, No.6, 828-837(1979).

12. B.Widrow, P.E.Mantey, LJ.Griffiths, and .B.Goode, Proc.IEEE 55, No.12, 2143-
2159(1967). 1]

13, D.L.Fried, J.Opt.Soc.Am.56, No.10, 1380-1385(1966).

14. R.E.Hufnagel and N.R.Stanley, J.Opt.Soc.Am.54, No.4, 52(1964).

15. D.Korff, J.Opt.Soc.Am.63, No.1, 8-13(1973).

16. S.L.Zubkovskii, V.p.Kukharetz, L.R.Tsvang, Akad.Nauk SSSR, Fiz.Atmos.Okeana
15, No.1, 44(1979).

17. S.Pollaine, A.Buffington, and F.S.Crawford, J.Opt.Soc.Am.69, No.1, 84-89(1979).

18. V.S.Komarov, A.A.Mittsel', L.LIppolitov, and T.V.Blakhovskava, in: Seventh All-
Union Symposium on Laser and Acoustic Sounding of the Atmosphere, Part 2,
Abstracts, IAO, Tomsk, 1982, 248-251.

© ® N e w

75




e

[— =

—

CHAPTER 5. MODERN CONCEPT OF AN ADAPTIVE OPTICS SYSTEM WITH A REFERENCE
SOURCES

In the world community of scientists and engineers working in the field of
adaptive optics the interest to development of optical schemes with an artificial
reference source rose again in 1985 due to great amount of papers appeared in this
period which was devoted to the problem of employing a signal scattered by
atmospheric inhomogeneities as a reference one. This signal, for example, can be
used for image correction in a ground-based telescope [1,2].

One of the most promising trends in the modern astronomy is a creation of
ground-based adaptive telescopes which employ a signal of a laser guide star (LGS)
[1-3]. The importance of investigations into the efficiency of adaptive optics systems
with an artificial reference source was understood in Llllc end of seventies. In this
period were formulated the main principles upon which the modern concept of
adaptive systems is based [4, 11, 12, 13]. According to this concept the reference
source is the element with the use of which the information is procured concerning
the distribution of fluctuations in the channel of radiation propagation. The way in
which this channel is formed influences the structure _nf the whole system. If the
principle of reciprocity is the base for an adaptive system, the most appropriate
scheme is the one with an independent source of radiation generating a beam
propagating in direction opposite to the corrected beam [4, 11].

Aiming at the practical realization of the system, the atmosphere should be
included into the loop, i.c., the backward scattering should be taken into account
with radiation reflected by an object or by inhomogeneities of the atmosphere. In
such a way an artificial (virtual) reference source is formed. In the early eighties in
adaptive astronomy artificial reference sources were named laser gm’de.sm [1].

There are two main schemes of LGS generation: monostatic and bistatic .
The laser used for this purposes is ground-based so the optical radiation travels two
times through atmospheric inhomogeneties. First, upward, to form the LGS itself.
Second, downward, in result of backscattering (secondary emission. or elastic aerosol
scattering) by atmospheric inhomogeneities. In monostatic scheme it is assumed that
correlation of fluctuations for the upward and downward propagation (for direct and
secondary beams) are maximum. Quite different conditions are characteristic for the
bistatic scheme (in some papers the term “bistatic” means the LGS scheme

formation, where there is no correlation between upward and downward
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propagation). In the both schemes one need to take into account peculiarities of
optical parameters fluctuations of radiation passed twice through atmosphere.

The LGS is aimed at providing a reference source bright enough for adaptive
optics. This concept recently begun to be widely discussed, but in fact it is not so new.
I would like to declare that two scientific terms: effective scattering volume and laser
guide star are scientific synonymes. The first term had been introduced earlier by
specialists in atmospheric optics and laser sounding [35, 6]. The second term - laser
guide star - had been introduced in astronomy for application with adaptive optical
image correction, In this connection the great benefit for the tasks of adaptive oplics
for astronomy possible to obtain with application earlier theoretical investigations
which have been developed in the atmospheric optics and laser sounding [5].

In the this part of report are presenting some results and formulae concerning
fluctuations of waves reflected from an object and waves passed twice atmospheric
inhomogeneities. In particular, the corresponding mathematical apparatus allows one
to estimate correlation characteristics of a LGS [5-10].

In Ref9 (1980) author have made mention of the fundamental possibility of
using radiation backscattered by the atmospheric aerosol. Smnmitigl up we can
conclude that Soviet scientists in eighties obtained all functions necessary to analyze
random displacements of the image of a sounding object for bistatic as well as for
monostatic schemes [4-10]. But in any cases under to solve some principal problem,
the quesion about the model of scatering or refrecting media still is always arise. The
solution of this problem have been determined the model of "secondary" source.
Possible as to interaction of model of similar source, as a solution of problem for
backscattering. _

Here should be noted the importance of the Summer NATO School Adaptive
Optics in Astronomy held in 1993 for development of méarchcs concerning
app]jc'atinn of laser guide stars. Since when this problem has been discussed on the
conferences heid by SPIE and OSA, namely, Munich’93, Kona'94, Photonics
West’95, Denver'96, Hawaii’96, Orlando’97, San Diego’97 and on the conferences
held in Russia (Tomsk’94, Tomsk’95, Shatura'97). '

The two main problems: focus isoplanarity and full-aperture tip-tilt correction

for LGS application for ground-based telescope were arose in the new papers (2, 13].
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A series of papers on the subject have also been written, among them [ would
like to pay a special attention to Refs. 13 and 14. Thus Refs. 13, 14 describes the
possibility of obtaining the partially-corrected image was described with resolution
close to diffraction limited one for adaptation by the Rayleigh (10 km altitude) and
sodium beacons (100 km). The angular position of the artificial guide star is assumed
to be fixed. It was shown that in the both cases the Strehl ratio decreases with the
telescope diameter. Paper [14] presented here in Appendix A.

The second problem - tip-tilt full aperture correction were devepoed firstly in
papers [16, 18, 19, 20]. To my mind, the most complete literature revue of the
modern state of LGS was made by R. Ragazzoni [16]. The two techniques for
measuring with a LGS is proposed in [18]. The first technique exploits a laser beam
transmitting through the main telescope and two auxiliary telescope, which are
separated from the transmitter, are used to measure a LGS image motion, averaging
over its angular extent. In his paper [18] author mentioned that monostatic LGS can
not be used for tip-tilt correction for main telescope, but bistatic scheme (without
correlation between upward and downward propagation) permites to single out the
tilt component corresponding to the transmitting beam which is highly correlated
with the tilt for natural star. Unfortunately, author of [18] did not made adequately
references [8, 9]. The new approach |19] same author exploits a small beam
transmitted from main telescope, and signal for tilt correction is determined by
substracting the LGS motion measured simultancously with the main and auxiliary
telescopes. There are not necessary references [6-10] in paper |19] too.

I my order, I would like to declare that in my papers [21, 22], where I have
made the analysis of R.Ragazzoni scheme [16], I did not presented full list of
references and missed citation of papers |16, 18, 19].

Papers [21, 22] are connecting with "optimal” algorithm, here these papers
are presented in Appendix B and Appendix C. The "optimal” algorithm in some cases
give increasing of efficiency for tip-tilt correction with LGS application. This
algorithm is based on the model of turbulence of atmosphere for site of ground-based
telescope. Among other papers reviewing the methods of a laser guide star forming I
would like to list the following [22-25].
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APPENDIX A

EFFICIENCY OF ADAPTIVE CORRECTION OF IMAGES IN A TELESCOPE
USING AN ARTIFICIAL GUIDE STAR

Viadimir P. Lukin, Boris V. Fortes

Institute of Atmospheric Oprics,
Siberian Branch of the Russian Academy of Sciences,
av.Academicheskii 1, Tomsk, 634055, Russia

It is well known that the use of a bright natural star as a reference source is limited by the
angle of isoplanarity " **, which usually does not exceed 10 angular seconds, while the
sufficiency bright stars are located less closely. In this connection in recent years the formation
technique of artificial guide stars is gathering force, based on the effect of laser backscattering
in the atmosphere **. :

However, phase distortions of the scattered radiation diverging wave does not coincide
with the distortions of the initially plane corrected wave® In this case this difference increases
with the decrease of height on scattering volume and with the increase of size of the telescope
entrance pupil. Formation of laser guide stars at large altitude is limited by small scattering
coefficient.

The present paper describes the possibility of obtaining of partially-corrected image with
resolution close to diffraction limited for adaptation by the Rayleigh and sodium beacons. For
making the calculations the numerical model of the adaptive telescope’ was supplemented by
the artificial star simulator. The details of atmospheric scattering were not taken into account.

The upward propagation of a laser beam is simulated as the propagation of a convergent
cone of rays intersecting in a focal plane. In this case the initial size of the cone is equal to the
telescope diameter. The shift of the beacon (cone top) can be written as

L

B, = | 3(2)dz: (1
where L is the path length, 3(z) is the vector determining the direction of beam axis. In
numerical simulation due to a discrete representation of random-inhomogeneous medium this
integral is expressed as

Nr

h= :Z__lr{zr}'{zbl = Z‘}‘ , (2)
where Z is the K-phase screen position. The beam axis tilt is defined by its refraction at all
preceding phase screens, including a running one, that is,
K
3{3:] i ’:Z-Ir (3)

where 3, is the K-screens contribution to be determined as an approximation of wave front
distortions s, (5) by the liner functions . i.e., as solution of problem:

H]‘LE:W]‘ET’”‘?’:}"; —C]:ff!ﬂ—}miﬂ (@)

where
Pr = _isl:zr]'!.z:,t“z:-]' and R, =R, -(1-2,/L) (5)
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is the current position of the beam center and its radius, respectively.

The subsequent part of the problem is the simulation of "downward" propagation of a
scattering wave. Considering a reference source as a point one and neglecting by the ray

deformation when propagating through the turbulent medium. the optical path length for the
ray at the point ({ 0) can be expressed as an integral

I{p) = :{.”{F}dﬂ =P-n + Eﬂ'(ﬁ +(B—p)-2/L,2) p,-dz> (6)
where B _
P= PP+ and puz. i (B (7)

is the beam length and the coordinate along it, real from the receiving aperture, i =n-n, isthe
refractive index fluctuations. In the paraxial approximation, ie., at (P-5,) [} <<1 we have

; : et it
o ar+ P B £ and oo 1 BB o 8
P=l TR p; .ll+ i 1 (8)
Assuming n, =1 for the optical path length we obtain the following expression:
p-‘ p: # L
ip)= L+ T Y A _Eﬁ(ﬁ+{b. -p)- 2/L, 2)dz (9)

The first two components do not depend on p and are the same for all the rays. The third
component corresponds to the divergent spherical wave ( in paraxial approximation). If the
reference wave passes through the same optics, by means of which the laser beam was
focused, this component is compensated. The fourth component describes the total tilt of the
reference wave occurring as a result of the fact that because of random refraction the reference
wave source Is shifted from the telescope axis. The last component represents the turbulent
distortions of the reference wave. Random fluctuations of the optical path length are written as

T(p)=-pP+ _Err{a +(py—7)- 7L, 2)dz (10)

The random-inhomogeneous field of the refractive index in accordance with the splitting
technique®® is represented as a sequence of thin phase screens that is equivalent to the
following expression

732 = ¥ 5:(6)-3(c) (11)
Substituting this expression to Eq. (10) we obtain:
— N
T(p)=—p"t+ 2Scp+ (P -p)-2c/L) - (12)

At numerical simulation the transverse coordinates are also presented as discrete ones,
1.e., the values of phase distortions are known only in the nodes of the grid

(13)
51.:,: o 5{.1},}_,. E_;:I-

Traditionally it is sufficient, however, in this case it is necessary to interpolate these values
to an arbitrary point. In the software developed for this purpose we use the two-dimensional
linear interpolation that is quite sufficient for the problem being studied.

For calculations we have used the following semiempirical model of the altitude profile of
turbulence intensity

G (h[km]] =510.10" .10-0%6* m-mﬂauﬂa-u.m;,l-ummna a
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The calculations were performed for the visible range. The coherence radius for this
altitude profile (14) is approximately equal to 18 cm at A=0.55um._ The angular position of
the artificial guide star is assumed to be fixed, i.e., §, =0

FWHM ( arcsec ) Strehl ratio FWHM ( aresec ) Strehl ratio
al - = — 03 GO0 . — s
hm — Fig1 By eyeop=10%m Fig2H, . .. =100km
| B & | 4
008 L] e a. — 04
\ 003s = u e
.47 r_v-._" 01 : 3 -x___u
0,04 |- \ \ e -~ 03
-\..\ b - -\__ﬂ
0ok |- \ ] ago -
004 ' " J a3
s L " - a3 ‘I__.
. ooos -
00 - —p-— FWHM N S ~ 0l
_ S : —&— FWHM _ ~
a0l b= —m— Strehl mtio #— Strehl ratio
.00 L . . oo 3 000 1 L | L | a0
04 Lo 1.4 20 24 3 4 [ & 7 ' [
Dunmeter ( m ) Dramneter ( m )

Figure 1 gives the results of calculations for the height of the reference source Hpescon =
L=10 km (Rayleigh scattering), Fig 2 gives the results of calculations for the height Hyeucon =
L=100 km, It is assumed that the adaptive system has an infinite spatial-temporal resolution. In
both cases the Strehl ratio decreases with the telescope diameter increase. At the same time
the angular resolution (FWHM) varies slightly ( L=10 km) and even is improved ( L = 100
km) remaining close to a diffraction one.
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LIMITING EFFICIENCIES AND APPLICABILITY OF DIFFERENT WAYS
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We describe here three possible schemes of the laser reference star formation,
namely, monostatic, bistatic, and intermediate. We also determine here limiting
potentialities of methods of correction for random tilts of a wavefront from natural star
using a signal from a laser star. The monostatic scheme of the laser reference star
formation is shown to be totally inapplicable for these purposes. The capabilities of the
bistatic correction scheme are estimated Then we show the possibility of using an

intermediate scheme

Among the problems that seriously challenge the
Investigators of adaptive optical telescopes is the need
for use of reasonably bright stars as reference sources,
since the telescope wavefront sensor, as a rule. needs
for a large amount of energy of star radiation to provide
Its proper functioning. The reguirement to the reference
source energy as well as the necessily of simultaneous
staying In one |soplanar area with the image of a star
being studied (or any other space object) and of a
reasonably bright reference star, provided allowing for
the fact that the atmospheric isoplanatism angle is very
stmall {in the visible range along the direction to zenith
this angle is 10"-15") essentially decreases the
percentage of sky coverage with this telescope

The investigators of adaptive optics solved this
problem when using the focused laser radiation guided
from the Eanth and backscatiered by the atmospheric
inhnmnganaltias,"’ namely, elastic aerosol scattering at
8-20 km altitude or a re-emission at B0-100 m altitude
from the atomic sodium clouds.

The problem of forming of a laser reference star is
in fact a combination of many scientific and technical
problems to. be solved, such as design of 2 specialized
laser system, choice of an oplimal altitude for the laser
reference star, measurement of the phase of laser
radiation reflected by the atmosphere and, finally, the
selection of the control algorthm.

In this conmection, of particular interest is the
publication by Dr. Robert Fugate, a well-known in the
U.8. specialist in laser systems, in which the author

states that by the fime of his publicaﬂon‘ {February

1988) no laser reference stars, using the scattering from
the atomic sodium clouds were operating successfully,
were unknown to him. Here it should be noted that it is
just sodium layer refererice stars which can provide
obtaining the best characteristics of the adaptive
telescopes.

In addition to the above problems, the use of laser
reference stars meets an obstacle, namely, the problem
of impossibility of full correction for the random
wavefront tils from a natural star based on

0235-8880/87/01 34-08 $02.00

measurements of lits of a wavefront from a laser
reference star

No doubts that the use of the laser reference stars,
due to the light backscatter, is connected with the
problem on selecting an optimal algorithm for making
use of optical measurement data to correct for random
jitter of a star image. It is just this problem we deal with
in this paper

Let us consider the following scheme of the optical
experiment formation of the natural star image in the
focal plane of a ground-based telescope takes place (F
is the focal length of the optical system, T is the size of
the optical systemn aperture). As was already noted, the
star image jitter formed in the focal plane occurs due to
the influence of atmospheric turbulence over the
telescope. We define this image jitter as a random shift
of the position of the center of gravity (provided that
these fluctuations are small) of the star image intensity
using the vector

F 3
pe==35 J J ov,5%0, p), (1

where k is the radiation wave number; 5(0, p) are the
phase fluctuations in the piane wave from the siar
formed. 3 73

In its turn, the measured random vector of the laser
reference star image jitter, formed on the basis of the
focused laser radiation, using a ground-based laser
sysiem, is given by the expression

pn= e Pl p7 @
whera
1 2
=5 J diix-2) [ [FRIE R Vari(e R) (3)
0

is the position of the center of gravily, focused at a
distance x from the source of the Gaussian laser beam,
HE R) Is the current value of the optical field intensity;
Vemls R) is the gradient of fluctuations of the
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atmospheric refractive index. We consider that the laser
radiation is focused onto a sufficiently small spot, not
resoived by a telescope through the atmosphere The
second term In (2) is of the form

sph F _ _.sph
pr ==izf 55" (r.0 @

and represents the point source image jitter in the
telescope focal plane
We construct the correction algorithm of a star

image jmer“ pﬁl in the form.
pl
PP =, (%)

where p=4Ap,, and the coefficient A is chosen to
provide the minimal variance of the residual distortions

{{pg = A pm}ir-,,.,m = cg' (8)

Having found the minimum for vanance in the form of
Eq. (B), we obtain

pé F |
pa < PFPm>
<0 >min = <(pr) > _demj‘b f

where the correcting coefficient A is expressed only In
terms of the determinant functions as

A= <pr pi<ipm)> (8)

It should be noted that the traditional correction
algorithm in the form of Eqg. (5), where A =-1, does not
provide minimum (8) to the variance and therefore
cannot be considered as any serious alternative

In & real experiment we have only the measurement

data pm, since the vector p: characterizing the real star
jitter, whose image should be corrected. cannot be
measured, since the real star emits only litte light for the
measurements with the wavefront sensor to be feasible.

At the same time, the coefficient A can be
calculated using a model description of the aitiude
behavior of the turbulence intensity Cn{Z). Taking into
account Egs. (2) and (B8), the variance and corrslation,
as components of Eq. (7) can bé written in the form
{using normalization and changing the characteristics for
angular ones)

(7)

Apn)> = pe>+ <@ L) >+ 2<P ¢ e, (9)
al pi pl sph
PR P> = SPE P> T <PEPFE > (10}

Now the question arises on how can the algonthm
{5) be useful for comrection? First of all, based on the
knowledge of a model of the altitude turbulence profile
one can;
1) estimate the limiting level of cormrection of the general

wavefront tilt, q:?—l by the following expression
B2
o }
—y . T
<lpz) > <dPml>

where the second term is estimated using the modeis of
turbulent atmosphere.

":ﬂ::'mm = {[[PF:}:‘} {1 g
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2) calcuiate the scaling factor A of measured values
of p= in the control algorithm, expressed in terms of the
average values

' 2
A= <¢?¢m:-i«:¢m}.

There are several schemes of laser reference star
formation. From the viewpoint of calculation of variance
and corretation from Eqs. (9) and (10) only two schemes
can be mentioned as limiting ones, namely the
monostatic and bistatic schemes. In the monostatic
scheme the star image formation in the telescope and
the formation of the laser reference star image take
place through one and the same atmospheric
inhomogeneities. In the bistatic scheme the reference
star is formed in the reglon isoplanar with the image of a
natural star, but the propagation of a focused laser
beam itself, forming the reference star, ocours through
turbulent inhomogeneities, uncorrelated with those on
the way from the natural star,

MONOSTATIC SCHEME

Thus, for the monostatic scheme the correction
coafficient A=Ay in Eq. (8) and its components are
calculated by formulas (8) and (10), respectively”

<qs = (2™ 250,033 [(1/8)) =

T R 2. 2
«[Re +as -2™(Ro+ao) ]x

.cde,{l—ﬂJr]“G:ﬁl. (11)
0

provided that the focused (x=1f) laser beam s
sufficiently wide ((kas)x >1) and the turbulent laser
beam broadening does not exceed focusing (Le,
*(112 De(2a0))** <1),

<pr = (-2 7 0.033 I'(1/6)) *

« f ez cienr —amliRo+ ac1 -2 T " (12)
o

When making these calculations we consider the
radiation from a natural star as an infinite plane wave,
propagating from zenith, and a2 laser beam is formed
coaxially with the main teiescope, forming the image,
then

<prpe>=(2° 20033 T(1B) Ry x
« [ ez clgr—am + (1 - T (13)
1]

The latter expression represents the correlation between
the plane wave image jitter and the point source image
jitter (measured in the telescope focal plane), with the
source being at a distance x from the telescope.

The variance of the star image jitter is calculated by
the following formula:
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<(pr) >=(2" 470,083 [ 1/6))R; " J ez iz
o
(14)
Since the star is far out of the atmosphere, the
upper integration limit in Eg (14) tends to = Using
these designations the minimal variance of residual

fluctuations of angular shifts of the star image for a
monostatic scheme is given in the form

':E::"mln a
e = <P omin=
i ' 2" fulx, CJ) }
—ttﬂ#} > 11 ""I1+ha-'ri.1.__2fﬂi1 ’I'J-!j-‘ni ' {?5]
where & = ag/Rp,
fulx, C) =
% 70 - 2
{ Secom-5T (5] }}
_Lo
b 7 & L R 5
Jecian-2) fece
0 0
(16)

From Eaqs. (11), (15), and (16) it is clear that b=1
{80 = Ry} the signal g becomes noninformative because
-cq::.tﬁqf 8o)>=0. At the same time the function
fiulx, Cr) vanishes. Therefore, for the monostatic scheme
of the laser reference star formation, from the standpoint
of information content of ., as well as from the power
standpoint, the domain of admissible values of 5 = aJR,
is the interval (0, 1), ie, b <1 For very small values of
the parameter b the estimate of minimal value of the
vanance of the residual star image jitter is expressed as

) S 2" fu(x, Co)
<P e = <l g ) :»' 1—[1 -:-b_m—.?ﬂﬁ +b‘)—’5f '

(17)
where the function
?M[x. ij =
x 2
{ J 4 e et -1 + (1 —;fxﬂ"‘}}
= ]
| -
J de crtent - ™ [ oz cie
0 o
(18)

is the limit for the funetion fiu(x, C) from Eq. (16) at the
parameter b —» 0.

Table| gives the calculated values of all the
parameter of a8 monostatic scheme interesting for us.
The calculafions have been done for different values of
the parameter b (b= 0; 0. ?25; 0.80; 0.85; 0.90: 0.85) with
the use of the model of CJZ) from Ref 7 for the mean
conditions of vision through the turbulent atmosphers
and the altitudes of location of a reference source x from
510 100 km. Table | shows that the value of the function

V.P. Lukin and 8.V Fores.

Hutx, C2) varies from 6.48 t0 112 In the same table the
values of the quantity

A= -r.p: p...}.l‘-c;.‘p,-.}?:- ;

are given, calculated by the formula (8) for the
menostatic scheme of the lasar reference star formation.

Thus, for the parameter b = 0.95 the values of 4., vary

from =15 to —16.1. Here the value of Cu = <B/<(qr) >
is given, characterizing the ratio of the value of variance
of residual fluctuations to the value of variance of the
natural star jitter signal. The calculational data show that
the values of Cy vary from 0.9197 to 0.87 These results
:iearlyz demonstrate that because of small value of
fu(x, C,) and owing to the fact that Cw only slightly
differs from 1, no efficient correction of random filts with
the use of the monostatic scheme of the laser referance
star formation can be expected. It should be noted that
this result has been obtained for the case of optimal
correction, therefore the use of “direct’ carrection
algorithm and the optical measurement data (at Am1)
the correction (6) is much less aﬂq’ctm
Owing to the fact that fu(x, C;) is small, the optimal
value of the ratio b, minimizing the variance <B% .
given by Eqg. (17), turns out to be comparable with the
dimension of the telescope aperture Ry It is known that
in this case (when as— Ro) the measured signal qu
decreases, and its variance < gm> vanishes. Therefore, a
compromise should axist in the choice of such a ratio
b=ag/Ra, which, on the one hand, minimizes the
vanance (17), and, on the other hand, provides the
measurement @ measurable signal @, i.e, ensures a
reasonable level of the variance (11). For example, one
can select the value b = ay/R,, such that

1457 -2" 1+ 6" <001,

i.e.. the signal of the reference star jitter proved to be ten
times smaller than real star [itter (although this
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opinion is too optimistic), then the optimal ratio b should
be equal to by = 0.86 However, it is known that it js
very difficult to perform accurate measurements of small
signals under conditions of noise and background
fluctuations. This shows once more that the correction of
wavefront tilts in the monostatic scheme is ineffective
since any effective comrection should be expactad for the
parameter value b1, ie, for the case when the
measured value itself becomes small and, hence. it is
measurad with larger error.

BISTATIC SCHEME

According to the bistatic scheme the laser star
formation is performed through the turbulent
inhemogeneities uncorrelated with those
inhemogeneities, through which the natural star image is
formed with the telescope. This can be done using
lateral irradiation (ata Etiﬁiﬁ'iﬂjr_lﬂ['gg__iﬁpﬂﬁﬂg; between
the optical axes of the laser beam propagation and the
telescope). Using the same procedure of search for
minimum of variance of residual fluctuations of image
jitter, we obtain for the residual level of fluctuations from

Eq. (7), respectively,
th 2

B
#2 =Pr@pF>

= — — (19)
<P <(pr) > (o) >

where
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2 r wph 2
e} > S<ps+ pr ) > (20)

Having made the same calculations as for the
monostatic scheme, we obtain the following expressions
for the correcting coefficient A = A, and for the residual
level of corrected varlance (7), where

B nph
<Pr P>

Ay =—F——F =
P>+ <lpr)>

x
2" [ dz CuE1 -t + (1 - g™

T o s ~ (21)
{1+ fﬂi CaHEN - 2™
o

Cﬂ iy a .”:f-b{]' c”}

= <P = lr) >{1- W‘T} (22)
ful X, Cf,}:

g ] 2

(f dE CHlEMT=EM1+ (1 'f.fr}’l'”'J’

.0 -

X "
Sz cuent — g™ [ ds cie)
a o

As the analysis of the latter expressions has shown,
the effective correction with the bistatic scheme of the
reference star formation ensures the minimum variance
of residual image jitter (22) with the correction in the
form

ol
th-A-h"P'bl

where g is the signal of the reference bistatic siar
Image jitter, Ay is given by formula (21). It is clear that in
contrast to the monostatic scheme the correction within
the bistatic scheme is possible at any ratic b= a/R;, it
is evident that the correction is the better the larger is
the value b {sea (22). If b =1, from Eq. (22) we find that

o= <lpE) > {1 = 22 f{x, C)

. 2 B1ix, C2)

The functions fifx, Co), As Ce=1- m‘qﬁ"' are
repreﬁented in Table |l for the model of the turbulent
atmosphere’ at different altitudes of the reference source
formation x = [1, 100] km, and for the values of the
parameter b = ay/Ry, 0.1, 0.5 1.2{1; 3.0, respectively. The
values of the function filx, C.) vary from 0628 to
0.7930. Therefore a more effective correction should be
expected from the bisiatic scheme as compared with the
monostatic one. Besides, in the bistatic scheme we do
not face the situation when the measured signal or its
varlance <{pe)> vanishes. OF course, the bistatic
scheme has 3 limiting correction level, and the vanance
of residual distortions (for example, for b =1) as a result
of such correction proved to be equal to

V.P. Lukin and B.V. Fortes

Fomn= <) > (1 - 272 ffx, C

The two limiting schemes of laser reference star
formation can be compared only by means of cancrete
estimates. It should be noted that it is necessary to
make the estimation not for a separate telescope (with
adaptive optics) but for the whole observatory, for
example, the Mauna Kiya observatory on Hawaian
Islands, where the three largest telescopes (Keck |,
Keck ll, and CHFT) are located, operating with the
adaptive correction of turbulent distortions. The first two
telescopes are with the 10 m aperture, and the CHFT
telescope (Canada, Hawaian Islands, France} has the
3.6 m aperture.

Thus, when investigating, with the use of the
monostatic scheme, equals the vanance of residual
distortions for every telescope

2" fulx, C3)
- [1 + b"“‘-?"‘ﬁ +b_':|-1.!' .

P = () > { !

It the Keck | telescope produces the bistatic star for
the Keckl|l telescope (the distance between the
telescopes Is 85 m), then we have

B)'s {1 =2 f(x, CI,

if the Keck | telescope produces the star for the CHFT
lelescope, then

= ol 2 2“! fn{)f. G:}
Homn= <07) > |1~ TrTi0mET™] -

Pomn= <(p

i CHFT produces the star for the pair of Keck | and
Heck || telescopes, then

f{x Gn}
<ﬂ1>-.-..1--<{wj > '{1 —""-m—*m1+{3;1n}- }

Before making the final conclusions we consider
the so-called intermediate scheme of the |aser reference
star formation

INTERMEDIATE SCHEME OF THE LASER
REFERENCE STAR FORMATION

Let us consider the bistatic scheme of laser
reference star formation in detall as is stated below. Lst
we have got two telescopes whose axes are spaced by
the distance (vector) pe. For simplicity we consider that
one of these telescopes is focused to zenith and forms a
natural star image, and the second felescope, forming
the laser reference star, is inclined at an elevation angle
fi relative to the first telescope so that the elevation
angle equals numerically 8=x=/2—po/x, where x Is the
altitude at which the laser reference star is formed

Let us first consider cross-correlations of random
shifis of the center of gravity pdpe) of the laser beam
formed with the second telescope whose directional
pattern axis is shifted by the vector pe-and is inclined at
an angle § = =2 — pofe to the horizon,-as well as th:

shifis of the center of gravity of the plane wave image pr
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wph
and the spherical wave image p+ formed by the first
telescope | |.e., the correlations

-]
<pe pelpol> <n‘r Pelpol= .

It Is Implurtant to understand that the first
correlation, -cpz e (pe)> for the plane wave, decreases
faster with the increase of the value of spacing between

) ph
the telescope optical axes pg than the second one, <p ¢
pe {pa)=, for the spherical wave. We try to prove this on
tha basis of analytical and numerical calculations. Let us
write the expression for the vector of energy center of

gravity of a laser beam, formed with the second
telescope from the ground surface, in the form

X
1 !

pulpo) =7 [ difx—5) [ [FR UL R)>Vam(& R),

o

(24)

where
Vam(& R =i [ [dn(e xx exp(ixR) (25)
and the mean intensity distribution of a laser beam,
shifted to the vector pn and tilted at an angle @ to the

Earth () = #/2 — po/x), Is given by the expression
2

8y 2
<HE, R)>= —7— exp {~(R—po[ 1-&/x)) /a ()}

#enZ)
(26}
Having made the calculations, we abtain
pelpo) =i [ dex—) [ [en(z xpex
]
% expl-x" 8214} explicpol 1 ~ £/x)) (27)

As a result we have the following expressions for
the xaﬂanm peipo) @8nd cross-comelations <pe e (pof>,
up

<pF Pe(po)=
. <pdpal>
-:{mc{pnl}‘:*r‘—‘;r“—‘:

= (2% 0,033 [(1/6)) 2™ 2, ™" «

X
« [decizi-gm™, (28)
a

on _<pdpolpr>
Qelpo)g s >=—F —=

= (~2x2 0.033 T(1/6)) 2% (Ra+ a3y ™ «

. pa & e
nﬁ[ﬂﬁ;t-mj { G5 CHEN1-210™, (29)

i
pl ‘TI'JC‘_F'IﬂPF?'_
Qelpo) Pr>= " -
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=(-2x°0.033 I(1/8)]2"™ [ ds cliEN1 -2/«
a

«{Ri+ af.:‘! -y x

( pal1 = &xy?
# 4y

115; 1;-m ? (30)

Having analyzed the latter expressions we can state
that the correlation between the slant beam and a
spherical wave decreases slower than the correlation
between this beam and a plane wave.

All the values calculated for this intermediate case
are marked by the subscript *I". Besides, together with
the parameter b= ayRy the parameter d=p/Ry Is
introduced, characterizing the spacing bebween the laser
beam axis, forming the star and the axis of the main
lelescope In the general case (for arbitrary values of the
parameters b= au/Ry and d = po/Re) we have, using
Eqs (28), (29), and (30) for a correcting factor A=A
and the values C, <ji*>, characterizing the varlance of
residual distortions, the following expressions:

A.=2m(f df.ci{qm-yx}{n'«n»w’r"‘-
-0
= (14 591 =y

( =g
= 1F 16G; 1.“‘_1'_"'—':"'“ e *

&

x (]-1 T B e § B - st

d’ X =1
nﬁ(ﬂa: 1:-mzﬂ]fdécﬁtéx‘l—wmj :

o
B = <{pz) > G
c=1 —z‘“[ S e cazx—zm) x
o
x {{1 * (1=gT) ™= (1 + 61 - &) " x
( pol1 =) J

S TR T
. [[1 Al b—m_z—m“ i bI}-'I!E z

« 1F1(1-'E: LH -“%F)) i| x

s - =4
x Jecuar-an™ [ ::«:c:-tf,}]
o o
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arbitrary parameter d = p/Rs the values of A, G, <p%,
east even at b= 1 (au = Ra) in contrast to the monostatic
scheme. At b = 1 we abtain

It can easily be seen that at o — 0 we obtain the
expressions for the monestatic scheme, and &t d = =
we obtain the expressions for a bistatic scheme. For an

r 2 )

f:Lc;(1 ijq:“(- 1) 1= 115,—1;-[ d‘(1-i)ﬂ

1 +b’(1 —5-)

[-W.F (115 14 t’J)]fuh.c,’lﬁ =) jdac,.{,j

Let us consider the asymptolic behavior of the expression for the correcting factor A = A and the values of G,
<p*>, at the parameter d — =, In this case we use the analytical continuation for a hypergeometric function

FA(106; 1, 2) = {f_rim( 3611-21’“)

My

'

P=<lpr) > | 1-27 (31)

-

As a result, the denominator in 4 equals

ST S g [ R
(105722 | [z clte) (1-em™
[\
and the numerator equals
: (- \_ (187" -
'|-1F1(1J’ﬁ.1.—d:‘1+b7”"_yx1:r)- T(5/6) (1+(1=2x))"™®
We obtain that
1 E (32)
2 pa o L
i — .' =
P> =<len)> G=<loe) > f1 58 zmg]_j'd_cn[ H1—-}"’3_f¢ CE)
aiith Hig laretion Thus, one can :iec:easa the variance (32) of residual
: fluctuations of the random star position by Increasing
7 -2’ 15" b=aJRs
F= [escue) : +{ -1 I Tables |l and IV give the results of calculations of
[1+{(1-2MT" T[(5\)d~] ;
a the functions A and C by formula (31) at b=1, the

{33) altitude of beacon from 5 to 100km, the spacing
it turns out that the numerator of the function C (see batween the first and second telescopes d = i A
Eq. (32)) at d—= does not depend on the parameter 10°. When comparing the data of these two tables with
b=ap/Ry, whereas the denominator depends on b=ad/Rs the column {at & = 1) from Table |l one can see that the

as follows: values of A and C spproach the values of Ay and Gy
. S e - s " when d— o=
[1+ 572 -225| feechior -2
0
TABLE Il
¥, krm a
1 2 3 B 5 | 6 T B g | 10

5 |0.5372 |0.5465 [0.5406 [|0.5511 |0.552 |0.5526 [0.5531 [0.5534 |0.5537
10 (05299 |05382 |0.541 [0.5423 |0.5432 |0.5437 |0.5441 [0.5444 |0.5447
15 |0.5271 (05335 |05357 (05368 |0.5374 |0.5378 |0.5381 |[0.5384 |0.5386
20 (05237 |0.5288 [0.5302 |[0.5311 05316 |0.5319 |0.5321 05323 [0.5324
85 |0.5075 |0.5085 05089 (D508 (05092 |0DS092 (05083 0D.5093 10.5083
g0 |0.5071 |0.5081 |0.5084 |0.5086 |0.5087 [0.5087 [0.5088 |0.5088 |(0.5088
o5 |0.5067 [0.5077 [0508 |0.5081 |0.5082 (0.5083 [0.5083 [0.5084 |0.5084

100 |0.5064 |0.5073 |0.5076 |0.5077 |o.5078 [0.507¢ |0.5079 [0.508 |0.508
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TABLE iV
x km a-
1 2 | 3 [ 4 T 5 1 & | 7 | & ] 8 T 10
5 |0814 07441 07091 08881 06741 06641 06566 06508 06481
10 |[0.7877 07089 06695 086458 063 08187 06102 06037 0.5984
15 (07728 06807 06496 06249 06084 05966 056878 0581 O 5755
20 [D.7ES 06817 0.64 0615 05883 05884 05775 05705 O, 565
85 |0.7512 06679 06262 06012 05845 05726 05637 05567 05512
90 |0.751 06676 0626 0601 05843 05724 05634 05565 0.5509
85 (07508 06674 06257 06007 05841 05722 05632 05563 0.5507
100 |0.7508 0.76672 06255 06005 05839 0572 0583 05581 0.550%

As a practical outcome of the above considerations
we can state that one can, based on the results
obtained, quantitatively characterize the spacing
between the optical axes of the main and star forming
telescopes characteristic of the so-called bistatic
schame,

Thus, the following conclusions can be drawn:

1. Monostatic scheme does not remove the
wavefrant tilts.

2 Bistatic and intermediate schemes (at spacing
between the axes of the two telescopes o > 40) are
practically identical

3, Bistatic scheme, where the two telescopes are
used for correction of random tilts s more efficient at
larger values of the parameter b
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The results are presented connected with the construction of an algerithm for
total wave-front tilt correction of a real star image based on the data of measuring the
angular position of a laser reference star A hybrid scheme of formation of the laser
reference star is used, because {o measure the position of this star, three telescopes
are used. one of them operates in the regime of monostatic star and two others in the

regime of bistatic star.

This article Is logical continuation of a number of
publications.”™ In addition, there exists a definite
connection of the main idea of this paper and
publications of Ragazzoni® and especially Belen'kil’
However, in spite of its similarty, especially to the
results of Ref, 7, there are significant differences which
are discussed at the end of the paper. For correct
comparison of our results with the data obtained in
Ref 7, the same designations are used, where possible.

Ta implement the proposed carrection algorithm
based cn the hybrid scheme of forming a |aser reference
star, three telescopes should be used. principal and two
auxiliary telescopes placed so that their configuration
forms an isosceles rectangular friangle. The following
scheme of forming the laser reference star is realized: a
wide Gaussian laser beam is focused with the principal
telescope at the distance X. The star is formed solely by
the central part of the principal telescope (it is' assumed
that the initial laser beam diameter &; < &, where a; Is
the aperture diameter of the principa! telescope).

In the focal plane of the principal telescope, the
angular jifter in the image center of gravity of the laser
reference star is measured along the OY and OZ axes
Simultanecusly, in the focal planes of two auxihiary
telescopes the angular shifts of the image along one of
the two axes are measured in the directien transverse to
the corresponding direction of separation of the axes of
principal and auxiliary telescopes

The laser reference star formed by focusing of the
laser radiation represents = long cylinder with diameter
am and length a., that is, ay>> &y, Suppose thai the
separations of principal and auxiliary telescopes are
such that for the awdliary telescopes the laser reference
star is formed by the bistatic scheme ®*” In this case,
the size of a laser beacon &, (connected with &, aititude
of star formation X, and separations between the axes of
auxiliary telescopes and the principal telescope), seen
from the points of location of the auxiliary telescopes is
much greater than the beacon size seen from the point
of the principal telescope location (&, »a5)

Thus, we obtain that for the principal telescope, the
forrmied star can be considered as monostatic.  Then
instantaneous position of its image {on the OY and OZ
axes) is

0235-6880/97/08 £03-03 $02.00
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Py = Py ¥ Pouy,

1
Prez = Pz ¥ Poas, (1)

where (g, Pe:) specify the instantaneous angular
positions (on the axes) of the gravity center of the laser
beam focused at the distance X inte the turbulent
atmosphers, (P, Pr:) Specify the [nstantaneous
anguiar positions of the image of the focused laser
beacon considered as a peint source. The auxiliary
telescopes measure only one component of the image
jiter of the laser reference star, that is, finally we have
the following pair of measurable angles:

Poy = Poy * Pany,

Por= P ¥ Pz,

where (guag P} characterize the instantaneocus
angular positions of the image formed by an extended
incoherent source, most correctly calculated in Ref. 7.
Further, we calculate the corresponding differences:

(2)

Py — Puy = Peay = Posy,
Prrz — Poz = Ppez — Prsz -

Berause the awxliary telescopes operate in the
regime of the bistatic reference star, corresponding
wvariances of differencas (3) are expressed as

(3)

Py — Bomy) > = <Pony) >+ <(pusy) > =
= <fgua,) > 1+ (Bf2ea) (4)

where &g is the size of the auxliary telescope
MNow let us formuiate the problem on optimal
correction (decrease] for the angular [itter in the real star

Pea{@us,, Orm:) ON the basis of measured angles (1)3)
and necessary calculations. In fact, we should minimize
the variance of the residual angular shifts of the real star
through the correction based on the measursments,
namely

By = <[ipray = A (Pey — Pu)] >,

2 2 5
B = <dpme— A (Pme = %.:}r} )
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Taking the advantage of the results obtained in
Refs. 2-5, we have (for the isotropic spectrum of
turbulence)

s . 21 &)
fy=Pr=Louy) > |V =r——=m [,

[1+ (8/aas) ] il
where
X g 2
[ [ecian-an b -fmﬁ'“]
1, Chy=— -
[azcken-gx” e
0 o
&

'ﬁ{tp.-,.,,.}:b is the vartance of the angular shift of the real
star image (along one axis), b = ay/a.. Optimal value of
the correcting coefficient A, minimizing functionals (5), is
calculated for the average model vertical profiles of the
structure parameter for the reflective index in the

atmosphere Njy(L), charactenzing the turbulent intensity
X
2™ [ascan-ganss1-g07"
A= (8)

X
(1+(aas) ) J' dLCHEN1-200 "

o

Let us estimate numerically the efficiency of this
correction for the real parameters of the experiment

x

2
TE O

V.P. Lukin

Let the principal telescope have the diameter varying
between 3 and 10 m. The auxiliary telescopes we select
from one-meter telescopes. Let the diameter of the laser
beam forming the star be &=1m  The wave
parameter for the focused laser beam €1 (2= kaf:i)q Is in
the interval 10100 for altitudes X varying from 10 to
100 km. Hence, in the focal waist the laser beacon size
i  8==1-10cm. Thus;, the laser star
cross section s seen by the principal telescope
at angles (0 < 01", which practically can be considered
as a point source. At the same time, the length
of the laser star is & and hence for proper separation of
the auxiliary telescope axes, the visible size of
the star 8. may be several minutes of arc, that is,
the laser star can be considered as an extended
incoherent source in the image planes of the auxiliary
telescopes. The real ratio is Su/a=10", b=1 In
calculations, we used the average model ﬂi{:}
suggested in Ref, 8

Summarizing these data and making calculations,
we obtain for Eqs. (6-(B)

B B [ 2" x, ci})
\--:{h,}':--qh,}'}: g= {(1+0,1) J* (9)
1ﬁx 1
2 J‘df,c.‘mﬁ-ﬂmnﬂ*l—;m’l'“
A s———y
11 facie -2
o
(10)

Results of numerical calculations are tabulated,
The dats for the case of nonoptimal correction (that is,
for A = 1) are also given in Table | In this case,

x
J-d"’ ) (1~ Jdi CE-PON 51T

o A UL -2
¥
o

Thus, from the table it can be seen that aiready for
the altitude of laser reference star formation higher than
10 km, this algorthm effectively corrects for the jitter in
the real star image on the basis of measuring

{two components) of the jitter in the monostatic
star Image In the principal telescope and individual

jﬁdﬁ
o
(11)

components of the jitter in two perpendicular separated
telescopes

TABLE L

X, km A | Afrom Eq. (9) | Afrom Eq. {11)
1 122 0 509 05139
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10 1.088 01729 0.1802
100 1.019 0.0866 0.0927

It should be noted that in practice there is no need
to optimize the correction by this scheme (that is,
specially calculate the parameter A) nonoptimal
correction (for A = 1) also highly efficiently corrects for
the angular shift of the real star within the limits of
Isoplanatic angies with the use of the laser reference
star

Apparently, our results should be compared with
the data of Ref 7. First of all, we note that the final
rasult |5 that the control signal so obtained, in contrast
with the results of Belen'kii, is completely independent
of the laser beam characteristics In Re! 7, the useful
signal for the correction is qu,, that is, the wave-front tilt
on the entire aperture. At the same time. the total tilt of
the beam g (in the beacon plane) is

P = P+ Py (12)

where q ts the local tilt of the beam

In this treatment, qw, i5 determined by integration
over the path in the upward direction (although from
Ref. 7 it is not clear, what wave. plene? laser beam?
spherical wave?). However, on the backpath (in
formulation of Belen'kli) this term is compensated in
Eq, {(12); therefore, in the principal telescope we
measure

lPT‘ﬂ - | q-;m = lp“ — Py
It is well known that in the monostatic scheme the

variance of the angular jitter

2 =1 =1 ™
fmnP:GDﬂﬁtfﬂnﬁ"' a; -2

X E 53
4 fd.; cHE [1 —f)
4]

therefore, the complete correction can be realized only
for the case &= &. In this case, jitter in the beam of
diameter 4 is compensated by the point source jitter on
the aperture 3; {when d;= &), Thus, the useful signal
for the correction is the angle = (in Belen'kii's

(@ +al) )x
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opinion, this is @ portion of the jitter in the beam
propagating upward caused by the antire aperture of the
telescope)]  However, this is not the case  Most
probably, separation of the term s from sum (12) is a
far-fetched maneuver in the chain of explanation.

In my reasoning, the useful signal (for the
correction) is the difference g — @u, representing the
image jitter of the point source without the average jitter
of the secondary incoherent sources, being the
difference of two measurements gm— e In this case,
the useful correction signal represents the results of
integration (practically for the point source ) over the
downward propagation path, wheareas the signal
obtained by Belen'kil (pn) is the portion (see formula
{12)) of the beam |itter qw, connacted with the integration
of the turbulence over the upward propagation path.

| would say that the method suggested by Belen'kil
Is true in the essence of its operations, but was
explained incorrectly, as a result, this complicates the
understanding of actual operation of this algorithm.

And finally, the main point is that the angle py from
{12} does not comprise the tarm, which would be useful
for efficient correction for the tilt angle of the real star
w In my opinion, Belen'kil offers wvery strange
explanation for each term of sum (12). According to his
treatment, the total tilt of the faser beam pw (In the plana
X) does not depend on the size of the principal mirror,
but each term of sum (12) depends on this size. | am
convinced this is not the case; the total tilt of the beam
e cannot comprise any companents that depand on the
characteristics of foreign objects, namely, of the
principal tefescope In this case, rather than on the
characteristics of the beam itself (beam diameter and
distance of focusing) and the propagation medium,
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INTODUCTION

The first report on Contract SPC 97-4040 was devoted to the methods of
numeric simulation of waves propagating in randomly inhomogeneous medium.
It was shown that with the use of the developed models it is possible to describe
correctly turbulent and thermal distortions of coherent beams.

To describe a whole adaptive optics system it is also necessary to take into
account limits of its spatio-temporal resolution, or, in other words, its ability to
form a given wave front with high speed and in some spatial interval. Temporal
resolution of the system is defined by an algorithm of control and by
characteristic frequency of its optics and electronics components and its
mechanical parts. Spatial resolution is defined mainly by geometry of such key
elements as a wave front sensor and corrector.

In Chapter 1 we consider mathematical and numerical simulation of a
sensor and corrector allowing for their geometry, number of elements, and
mechanical properties. Simulation of a reference sources is also considered in
Chapter 1 including simulation of ansioplanarity cone of a laser guide stiy

In Chapter Il we apply the model and developed on its base computer
codes in the problem of adaptive forming of images in a telescope. Here the main
attention is devoted to the analysis of the structure of a point spread function

under the condition of partial correction.
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CHAPTER 1. THE MAIN ELEMENTS OF AN ADAPTIVE SYSTEM MODEL:
A REFERENCE SOURCE, WAVE FRONT SENSOR, AND ADAPTIVE
MIRROR

In the present Chapter of the report we consider three main elements of an
adaptive loop:
¢ reference source;

+ wave front sensor;
+ corrector of a wave front.

We have investigated the following modifications of these elements: a
reference source, natural guide star, artificial guide star; an ideal quadratic
sensor. an ideal sensor of phase differences, Hartmann-Shack sensor, modal
corrector, segmented mirror with hexagonal elements, mirror with given response
functions, and deformable mirror with continuous surface. The results of
simulation of these elements are presented partly in this report and will also be

included in next reports.

1.1. A reference wave

A typical adaptive optics system employs a reference wave to obtain
information about atmospheric inhomogeneities. In phase conjugated adaptive
systems /1, 2, 3/ as a reference wave can be used a wave reflected from an
object, or an additional laser, or radiation scattered by the atmosphere /4/. In
adaptive systems of an image correction for correction of distortions is used a
portien of incident wave /5, 6/.

Let us consider a reference wave as a coherent monochromatic radiation
with a complex amplitude U(5, z.1)

Em,.(ﬁ,:.f]:ﬁ-U[ﬁ,:,I]-ﬂxP{imr+sz}. (1.1)

Here and hereafter all the notations used are the same as in the first report on
Contract SPC 97-4040.

Propagation of this wave in direction opposite to Z-axis is described by the

parabolic equation:




I
|

= =

| frm— Jr— ==y
—] i i L i L ]

| i==aa|
k |

Ly

=2k = | o+ + Kk - 1}]U. (1.2)

In imaging systems the wave with aberrations that should be corrected
propagates in the same direction as a reference wave and so it is described in the
same way. In the systems of beam focusing waves propagate in opposite

directions. In this case the complex amplitude of corrected beam E(p, z,1)

E(p,z,1) = &- E(p. 2,1)- expliot - ikz) (1.3)

is described by the equation

=2 -2

W% V— v+ K (n/nd - 1}]5.

(ord ax? oy’

(1.4)

r e in a ugated
Let us consider an adaptive system in which distortions compensated
according phase conmjugation algorithm. To estimate the characfcristics of this
algorithm the reference wave should be defined in such a way that in the absence
of aberrations the conditions of propagation would be same as in the absence of
adaptive control. So the boundary conditions for the corrected beam should be
written using the difference AS of wave front of the reference wave from the

diffraction limited phase distribution Sp:
E\(p) = E(0,p) = A4(p)- exp(iaS) AS = S(5) - S,(p). (1.5)
or
E,(5) = 4(5) exp{i are(U(5)- U,()))- (1.6)
Here Ay is a complex ampiitude of the initial beam in the plane of transmitting

aperture. If the reference and corrected beams have different wavelengths, the

procedure of adaptive correction should be formulated in terms of wave fronts

E,(p) = 4(p)- exolik(6(5) - .4(9))). (1.1.7)
where 8 is eikonal of the reference wave. Eqgs. (1.1.7) and (1.1.8) do not impose

any additional conditions on the reference wave, but it is assumed that the phase

of the wave in vacuum is known.
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Phase conjugation (PC) we will consider as a full field phase conjugation
(FFPC), but without the amplitude control, i.e.,
E()=U;() (FFPQ), (1.1.8)

Ey(p) = 14,(5) - expl- iarg(U,(5))]  (PO). (1.1.9)
To obtain with Eq. (1.1.9) in vacuum the same results as for beams without

correction the following condition should be imposed on the field of the

reference beam:
UéJ(};) = const .Au(ﬁ), ie., arg(U{?(ﬁ)) = arg(A”@)), (1.1.10)

here U - is diffraction limited wave front. The wave equation can be
conjugated so this condition is satisfied if the boundary condition for a reference
wave is expressed through diffraction limited wave front U] of a beam without

correction
U(p,L)=const -EP(p,L). (1.1.11)

In the problem with boundary conditions formulated in this way the phase
conjugation of the reference wave approaches the full field phase conjugation
when optical distortions on the path of propagation decrease.

The conditions stated above insure the results of correction almost the same
as the results obtained in vacuum, at least under the small distortions. So the
estimations of this kind can be considered as estimations of limits of adaptive

system efficiency.

An artificial star used in an adaptive telescope

Let us consider a problem of reference source simulation in adaptive
imaging systems. In this case reference and corrected wave propagate in the
same direction. If a portion of corrected beam energy transferred to the wave
sensor, this wave is a reference and corrected at once.

In a ground-based adaptive telescope the reference source is a natural or

artificial star. In such systems there are different causes of residual errors. For




example, angular anisoplanarity /7, 8, 9, 10/ and quantum noise in the case of a
natural star. If an artificial star is taken as a beacon, the residual errors
associated, first of all, with the fact that reference wave is divergent and travels
through inhomogeneities different from that for a plane wave irradiated by a star.

Boundary conditions for a reference wave irradiated by a natural star can
readily be written. The wave is plane, the axis of propagation is slanted on some
angle y to Z - axis of coordinate system:

U,(p,7) = A- explikyp). (1.1.12)

Numerical simulation becomes difficult if this angle is greater than 1. Really,

the spatial spectrum of complex amplitude for this radiation is the following

U(x) =

g Ue—y &

IA - explikyp) exp(ip)d’p = A-8(k7). (1.1.13)

This spectrum corresponds to the spatial frequency x = ky, but according to
Kotelnikov theorem the maximum frequency that can be reproduced on the grid

with a step of discretization Ap 18

s
= — 1.14
R ni (1.1.14)
Using the condition ky < x_,, we obtain

oA (1.1.15)

= kap  2Ap°
With typical wavelength 2=10" m and Ap=10"1 m
v <5:10° = 1". (1.1.16)
At the same time the angles of most interest are of order of 10", that means
that the step of discretization on the grid should be taken 102 m. If we consider
the problem of 10-m telescope the computational grid is 1000%1000, that is too

much.
To decrease the dimension of the problem we propose the following

technique. The boundary condition for the complex amplitude is written in the
same way as for a wave propagating along the axis of the optical system (y=20)
and each phase screen is shifted on the interval A =7.z which is equal to the

distance between the axis of opticai system and the «central» beam of the plane
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wave. In other words we make the change
Uy(5.7). S() - Us(5.7 = 0). 5~ 7). (1.1.17)
With y = 10" on the upper boundary of the atmosphere (z = 20 km) the shift
1$ equal approximately to 1 meter. When the direction vector y coincide with

wind velocity V, the shift of a screen in a space can be substituted by equivalent
temporal interval, i.e.,
Uo(p.7). $(5.1) = U(p.7 = 0), 5(p.72/7). (1.1.18)

Let us consider the problem of simulation of an artificial star. The idea to
change a natural star for an artificial beacon appeared due to difficulty associated
with correction of residual errors induced by angular anisoplanarity. So such a
beacon is usually placed on the axis of the optics system.

A laser guide star is formed by backscattering of radiation. So the
propagation of a laser beam should be simulated from the ground to the upper
layers of the atmosphere and in the opposite direction. In the both cases we
encounter difficulty, and the method of numerical simulation should be modified.

One of the problems is that computations should be made for a focused
beam with large Fresnel number. In a case of 3m telescope with an artificial star
generated by a laser beam of a wavelength 0.5-10¢ focused at 10 kilometers

Fresnel number is

. 2 s (1.1.19)

—_—
F VAL Jos.10¢-10°
and wavenumber (Gaussian beam:} s

L kL  05-10°-10°
kR 27(D. 4y - 6.28-075

<15 -10° (1.1.20)

ot =

With such wavenumbers the lens transform of initial wave front should be
performed but this type of transformation is not always possible. But at the same
time we should understand that the main cause of residual errors is purely
geometrical. A large Fresnel number and relatively short path allows one to

conclude that the approximation of geometric optics is possible in the problem.




] .

] | =0

p———

== . {——

=

We propose the following method of solution

The upward propagation is considered as a convergent cone of rays
intersecting in the lens focal plane, the base of the cone is equal to the diameter
of transmitting aperture. Simulating upward propagation it is necessary to define
shiﬁing' of the focal spot in transverse direction due to random refraction.
Broadening of the spot due to refraction and turbulence can be taken out of
consideration because beacon is seen through a subaperture of Hartmann-Shack
sensor as an object that cannot be resolved.

The shift of a focal spot (the top of a cone) can be written as
L
A = [ §(2)dz (1.1.21)
L]

where L is path length, 5(z) is a vector defining the direction of the axis in a
cross section z. In numeric experiments the randomly inhomogeneous medium is
represented by a set of discrete layers so the integral in Eq. (1.1.21) is substituted

by a sum
N
fiﬁ=zif(:J](ZJ| —Z_,), (]-122}
J.
where g; is coordinate of jth phase screen. The tilt of the beam axis is defined by
refraction on the whole set of screens (from the ground to jth phase screen

including also this screen), ie..
F, J
iz)=25, (1.1.23)
=1

where §, is contribution of jth screen. This contribution should be defined as a

mean gradient of phase S; with averaging over the cone cross section in plane g

o) -
5T = R{__I'ldrdy%i - __Ld}{.ﬁ'j(xn,y] - 5[~ xz. _}}} xp = yR -y (1.1.24)

-

where R is the cone radius in the taken cross section. The origin of coordinate
system in each cross section coincide with the axis of the cone.

The next problem is simuiation of downward propagation of the reference
wave. Taking a reference source as a point and disregarding bending of rays due

to atmospheric turbulence, fluctuations of optical path length of a beam in point
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with coordinates (5,0) can be written as

L

+ [#(p+ (B, - p)-2/L. 2)dz. (1.1.25)

o

b~ |2

1(p) = 5
This equation obtained with the condition

= Wl
%—{ﬂ']

’ (1.1.26)
i.e., in paraxial approximation.

Due to this condition was developed the well-known conclusion that the
general tilt cannot be compensated for by an adaptive optics system with an
artificial guide star. Let us assume that an «inhomogeneity» (a thin lens) is placed
right before the telescope aperture, i.e.,

A(p.2) = ap-8(z). (1.1.27)
Using simple geometrical schemes it can be shown that a beam is formed by the
lens in a point
=L (1.1.28)
and
F(a)z—5%+:&ﬁ~5{z}-dzz—&ﬁ+&ﬁ=ﬂ. (1.1.29)
Eq. (1.1.25) is the base of numeric simulation. According to the splitting
algorithm /11/ randomly-inhomogeneous field of the index of refraction is
represented by a series of phase screens. This representation is equivalent to the

following description of #(p,z):
Nr
7(p.2) =2 5,(5)-8(z,) (1.1.30)
jal
Substituting this equation 1nto Eq. (1.1.25) we obtain

()= "a%+§sj(§+(ﬁa_a).z,p:) (1.1.31)

Transverse coordinates are also represented by discrete analogues, i.e., phase

distortions are known only in nodes of the grid
'S:{,m,; = ‘Y(II! .Vmu ":;)+ (I. 1.32)
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In the considered problem it is necessary to interpolate these values to an any
arbitrary point. Simple two-dimensional interpolation is sufficient for our

problem. Interpolation is performed according to the formulae
S[.T., }'m.]) = S{‘t‘ym)

S(xy) = S(x.3a) + Ay (¥ = ya)
Sz 70) =S5 5,) (1-1.33)
() = (o) + 2l Sor) (o

Here a pair of indexes (/, m) corresponds to the left low comer of a cell where a
point is located with coordinates j = (x,y). Optical difference of the paths for a
nodes of computational grid is calculated according to Eq. (1.1.31) written in the

form

Iw=1(p10) = Pra 5}5 + 'erj(ﬁ,,, +(By = i) 7/L)- (1.1.34)

J=1

—

Interpolation is performed according to Eq. (1.1.33).

We have considered three possible models of a reference wave. The model of
the beam propagating in the opposite direction was formulated so as to minimize
the effect of isoplanarity, i.e., paths of a reference and corrected beams in
absence of aberrations coincided. Due to this fact we investigate actually the
limits of phase correction efficiency.

The effect of wave diffraction on turbulent inhomogeneities can be
disregarded when vertical paths are considered so efficiency of phase and
amplitude-phase correction in adaptive telescopes is almost the same. The main

source of aberrations is effect of anisoplanarity, i.e., the factor purely geometrical.
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1.2. Wave front sensor

Information concerning inhomogeneities of the index of refraction on the
path is carried by the radiation of a reference source. To extract this information
we should use some electro-optics device. Commonly, devices of this kind are
referenced to as wave front sensors. Numerical simulation of the sensors is
considered in the present paragraph.

Generally, the problem of their simulation can be formulated in the
following manner. A complex amplitude of a field obtained as a result of numeric

simulation of a beam propagation is represented in nodes of a computational grid
U, =Ulp,,), 1.J =0)...,N -1 (1.2.1)

[t is required to define a two-dimensional function @ which is estimation of a
wave front of the given wave. The precision of this function estimation should be
a characteristic of spatio-temporal resolution of a device that we simulate. For an

ideal device this estimation should meet the following condition
arg(U;__, . :xp(—ibu)] = arg(U;__, -exp| - ikﬂ;lj)) = const . (1.2.2)

So the estimation differs from a real quantity only by a constant.

Ideal quadrature wave front sensor

One of the problem of modern adaptive optics is comparison of full-field
control with phase-only control. To accomplish this problem, principally, we
need only a model of some ideal sensor. In numerical experiments we can obtain
the real part ReE = A4 cosg of a field complex amplitude as well as its second
quadrature component ImE = A sing, so this sensor can be called a quadrature
sensor. Phase in each node of the grid is computed as a main value of an
argument of complex amplitude arg(E). The possible values of Arg(E) is limited
to the interval [0,2z] so if an amplitude of aberration is greater than A the lines of
discontinuation appear inevitably. When these lines are closed the discontinuities
can be removed by addition of 2zn in a region bounded by the line.

Because direct detection of quadrature components of a field is practically

impossible in optical range, phase measurements by sensors are based on intensity




i N B E -

=

=

13

measurements, so we have to make some transformation of the wave (diffraction
or interference) after which the distribution of intensity is analyzed
mathematically, as a result we obtain the estimation of two-dimensional

distribution of the wave front.

An ideal wave front sensor

There are two approaches to the problem of wave front detection. The first is
based on measurements of phase differences, the second on registration of local
tilts. The detection of differences is performed with the use of interference
transformation and, correspondingly, an interferometer is used as the optical
component of a sensor. In adaptive optics systems commonly used
interferometers of transverse shear, where the phase difference between two small
squares is registered. In idealized case the phase difference is detected between
two spatially separated points.

The technique of numerical simulation allows one to form two-dimensional
array of phase differences between neighboring nodes of the grid along OX and

QY axis. The elements of the array can be written as
ﬁj,} o) arg(uf-u 'U;_J '
Ny = aTB(Uu-i 'U;.J) .

To simulate errors of a sensor. noise can be superimposed additively on these

- (1.2.3)

differences
Ay = arg(UI-I.J' ‘ U;J] + Uy (1.2.4)
Ny = afE(UuA % U;_;) + U7 -
Because complex amplitude is defined in nodes of a discrete grid, the most
convenient is a direct method of phase reconstruction based on two-dimension
discrete Fourie transform (DFT) /12, 13, 14/. The whole number of differences
is two times greater than the number of points where the phase is computed so

the problem is excessive. Usually, the following parameter is minimized

Z[(‘hr-:..r - ﬁ’u)_ A%, ]? +[[¢r,1-| = ¢';_.r) = 5}}.;]: —» min (1.2.3)
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or

(;(d’:,; = ér.xi) ~» min. (1.2.6)

Here angular brackets denote statistical averaging over the ensemble of noise,
¢,, is the sought for phase estimation defined in nodes (i, j), ¢,, its precise
value. In the both cases the solving of the set of linear equations is required

Orotg +Oras Y Oppa + Oy — 4y, = A, + A, Ay == Sy (1L27)
The unknown and known functions are represented as a Fourier series of the

form

Fyu

~ 2cos(2xL/N) + cos(2zM /N) - 2)

D u (1.2.8)

Where @ is two dimension discrete Fourier transform (DFT) of phase array ¢ and
is DFT of the right part of the original equation. For L = M = 0 the
denominator is equal to zero that means that the problem is solved with precision
up to a constant.

The values of the sought for function (wave front) are unknown at the
boundaries of the region, so the boundary condition should be formulated for
differences. These conditions are included already in the right-hand part of
system (1.2.7) and associated with values of wave front in points beyond the
boundaries of the grid region

Nyas=0ns =0y ALy =u-06y,, J=0....N-L (1.2.9)
Nyy1=Cy—Civy 2= 1=0,..N-1
Definition of the boundary conditicn is dependent on the method of the function
continuation bevond the region of definition. Any function defined on the grid

with number of nodes N=N can be supplemented up to periodicity at least in one
of the following two ways. First, the function is continued periodically without

any transformation

Orns = Ors =Prnis
¢'J‘.I-_.'h' = ¢r..r = ¢L.L:r-

In this case the function is continuos only over a period. A break of continuity 1s

(1.2.10)

possible at the end of a period. Phase differences can be calculated at the borders
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through the known values by the following formulae:

N2
ff_u = ff.\'_t..r = Zﬁl;..n

i (1.2.11)
A= -'fr ' ;‘5‘}.1

Next method of continuation is definition of a new discrete function on a grid
with doubled number of nodes by mirror reflection of an original function /15,
16/. The obtained function is periodical with a period 2N. Only one quarter of

the area is used that corresponds to the initial grid with N+N nodes.

The same system of equations is solved in both cases so the result should be
the same, at least when noise is absent. The first method is more economical,
because Fourier transform is performed on the grid with less number of nodes.

From the above we can conclude that solving Eqgs. (1.2.7) with a right hand
part defined by Eq. (1.2.3) one can obtain wave front with precision up to a
constant, Definition of noise according to Eq. (1.2.4) facilitates simulation of
measurement errors. All in all, this model corresponds to interferometric sensor
with resolution equal to a distance between nodes.

From the other hand, the algorithm allows one to solve the problem of
unwrapping of a wave front which appears in a model of an ideal quadrature

sensor, but only when all contours of discontinuity is closed.

A sensor of local tilts

Let as consider a model of a Hartmann-Shack sensor. The method
formulated by Hartmann /17/ is based on measurement of local tilts on
subapertures and subsequent calculation of a phase map over the whole aperture.

Nowadays Hartmann-Shack sensor is the most common in adaptive optics
applications. Geometry of the sensor is illustrated in Fig. 1. The sensor is a set of
focusing lenslets, a matrix of photodetectors is placed in a focal plane of lenslets.
Light amplifiers are used usually to increase the intensity of light incident on the
SENSor.

The sensor operates in the following way. Each subaperture focuses a portion
of light into a photodetector plane. Shifts of focal spots is obtained using signals




AR A B & -

B | ™

16

from photodetectors. It is assumed that these shifts are proportional to average
local tilt of a wave front in bounds of corresponding subaperture. When the
matrix with large number of photosensitive elements is used, the shift of focal
spot is defined as a shift of its sentroid.

We have realized numerically two models of Hartmann-Shack sensor /18/.

The first method of the sensor simulation

This method is based on a direct calculations of intensity distribution in a
focal spot for each of subapertures and subsequent estimation of sentroid shift.

According to the method developed small parts corresponding to subaperture
areas are cut out from the initial array of complete amplitude. The obtained
arrays include very few elements so it is convenient to supplement them by
zeros, in this way we can obtain intensity distribution on more dense grid. The
input pupil of the sensor is circular so we should mask correspondingly
distribution of the intensity. An amplitude mask is also superimposed on each
subaperture.

The next step of the algorithm is computation of intensity in a focal plane of
a subaperture.

The important factor that influence the error of measurements is a shot
noise that can be accounted for by quantum origin of light and by a dark current
of a phototetector. Simulating numerically Hartmann-Shack sensor it is
convenient to use an input parameter mean number of photons <N,> incident on
a subaperture during the time of exposure. Each node of compuational grid

corresponds to a small area of photodetector. Foi each area the mathematical
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FIG.1 Schematic representation of a wave front sensor
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expectation of a photoelectron number <n,> is calculated as a product of <Np>
and a portion of beam energy incident on the area. Using the calculated mean
<np> we generate random values n, according to Poisson statistics. The shift of

focal spot Ap is estimated as a shift of centroid of the distribution np(x;, ys) after
that the local tilt is calculated as a ratio of Ap and focal length f

§=Ap,/f (1.2.12)

The second method of the sensor simulation

In application of the second method calculation of intensity distribution in
focal plane of a sensor subapertures is not necessary. The method is based on the
direct estimations of the centroid shift. In this case the shift is taken as a
weighted on intensity / mean over subaperture A gradient of wave front ¢. Using

the parabolic equation it is easy to obtain the well-known equation

P, = %ﬂ' 1(5)Vod . (1.2.13)

Here P is the whole imwcr of the beam incident on the subaperture. Difficulty in
application of the equation associated with taking phase derivative, ie., if we
know complex amplitude it does not mean that we have a continuos phase
surface. To avoid this difficulty we should express a weighted phase gradient

through gradients of imagine and real parts of a comnplex amplitude £
1(p)\Vo - |E' Vacrtg(lm E/Re E) = (Re E)V(Im E) - (Im E)V(Re E). (1.2.14)

After that we obtain the following equation for a local tilt esimation:

s = [ (Re E)¥(im E) - (Im E)V(Re E)ld’p (1.2.15)

In our numeric model calculation of derivatives is organized with he use of DFT
performed over the whole grid, aﬁ::r that the estimations for each of subapertures
are obtained. This technique allows us to minimize the number of numerical
calculations. |
'Récunstmcted wave front can also be obtained by different methods. There
are two main approaches to this problem. According to the first approach phase

differences are calculated through local tilts after that an algorithm is used
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analogous to algorithms employed in interferometric sensors. According to the
second a wave front is written as a sum of some functions. For this sum local tilts
should be the same as calculated earlier local tilts.

When we use a modal reconstruction over a sensor aperture the sought for

distribution is a series of polynomials Z;

#(p) = iq-fﬂ(ﬁ)- (1.2.16)

When the difference is minimized between local tilts of this distribution and tilts

obtained in the wave front sensor

i

mIL

2

a}fh—f_J — min. (1.2.17)

'

M

E

1
Here Z, is the local tilt of the /th function of the basis over the mth subaperture.

The components of local tilts can readily be computed as coefficients of linear
approximation of function. The problem of minimization is solved by a common
method, i.e., by taking partial derivative with respect to the coefficients of the

series and equating these derivative with zero.

- -

o M[L i
ZIZH,ZM—EMJ =0. (1.2.18)

0y w1l 101

As a result the system of linear equation is obtained which can be written in a
ma:rix form as

I!"Ii.’l

Ja] = |8, (1.2.19)

where

I

A, = [f _5,2",,], B, = ii’m L (1.2.20)
m=1 m=|

The system has a following soluiion
la = 4|13 (1.2.21)
The reverse matrix is calculated numerically when sensor data are initialized and
the reverse matrix once calculated is used after that at each subsequent exposure.
Zernike polynomials are use commonly as the basis of expansion and we

also use them.
The second method of a wave front reconstruction is based on a zonal
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algorithm. The first step of the method is calculation of phase difference A
between the centers of neighboring subapertures
Apn = 4(& + 2.)(p: ~ 5.).

where py and p,, are coordinates of the centers of the mth and kth subapertures,
gk and gp, are estimations of local tilts over these subapertures. Vector description
of algorithms allows one to use them practically for any geometry of subapertures.

Testing of the sensor numeric model is performed by the following method. A
given phase was defined as a sum of the first ten Zernike polynomials.
Hartmann-Shack sensor was simulated according to technique described earlier.

Errors of reconstruction of polynomial coefficients were less than 1%.




1.3. Wave front correctors

Because a corrector of the wave front defines a spatial resolution of an
adaptive system, it can be considered as a key element of the loop.

The mirrors are commonly used as correctors in modemn systems of adaptive
optics. The two main types of mirrors are segmented and flexible. The mirrors
differ by a number of degrees of freedom, material, geometry of driver and so on.
These two types of correctors are considered in the present paragraph of the

report.

Modal correctors

A modal corrector is a hypothetical mirror, its response functions are
components of some basis of expansion, usually, Zernike polynomials. There is
no such a device, but estimations of its efficiency is interesting from theoretical
point of view, as well as from practical. For example, some flexible mirrors are
developed with an interface that allows one to asses the gquality of reproduction of
the lowest Zernike polynomials /19/. From the other hand, the output
parameters of the algorithm of a wave front reconstruction described in the
previous section of the report, are coefficients of aberrations. And to formulate
requirements to a mirror its is possible to estimate the number of these
aberrations. Moreover, statistics of Zemike polynomials are well known for
turbulent distortions /20, 21, 22. 23, 24/ and in some cases allows one to obtain
simple expressions for estimatiors of control efficiency /25, 26, 27, 28, 29/.

In the adaptive optics system with a modal corrector the corrected wave

front is computed as a difference between the initial wave front and a truncated

series of Zernike polynomials

A4(p) = ¢{ﬁ)—§1[ﬂ;2:(ﬁ) (1.3.1)

The coefficients of the series are found from the condition of the minimum of

approximation error

- W -3
J'W(ﬁ)[cb{ﬁ)— ?_‘{afz, [Em;’R}I d’p — min (1.3.2)
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If an aperture function corresponds to a circle

n Lp<R
W{p)z{ﬂ SR (1.3.3)

r

then from orthogonality of Zernike polynomials in a circle it is follows that the

sought for coefficients can be found as coefficients of expansion

[6(6)- 2,()- a
a === (1.3.4)
J‘za:{ﬁ} -d’p

[ L R

In the opposite case the problem is solved by a varational method from which

the system of equations follows
4 la| = 1B (1.3.5)

where
Ay = Iw(ﬁ)zx{l?’fﬂ} Z:(ﬁfﬁ}dzp, By = JW(E}) Zk(ﬁ‘.f'ﬂ)-tb(ﬁ)d:p (1.3.6)

In a numeric model all functions are defined by their discrete analogues and

integrals are changed for corresponding sums
Ay =2 W(61,)2:060,/RZ 61, /R) B =ZW(31,)24(61./R)pL,)(1:37)

Solution of Eq. (1.3.5) yields the following parameter that should be minimized

r L 2
G: = z W.".I: d]'I..F == E ﬂfz:(aa;_,r ,F{R]:| (133)

Deformable mirrors

In the modern scientific literature many types of deformable mirrors are
described. They differ by number and construction of actuators, by a method of
actuators clumping on the mirror plate and so on. The most common are mirrors
with discrete points of application of deforming forces or moments of forces
/30/. So we consider this type of mirror in more details. Usually this mirror is
described through given response functions. The surface of mirror is defined as a

weighted sum of this functions
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S(p) = >.q SilB-5) (1.3.9)

where a; is a deformation of reflecting surface in a point of ith actuator fastening.
The response functions can be obtained experimentally or found by solving
corresponding problem of mechanics. There are shown by some authors that

Gaussian response functions

=
-

() = cxp[— £ (1.3.10)

ensure good correspondence with experimental data. The half width w is
obtained from experimental data. The typical value of this function is 0.7 - 0.8 d,
where d is a distance between actuators.

To obtain a reproduction of a given surface by a mirror the problem of |

minimization (Eq. (1.3.8)) was written in a following form
{
o’ = [W(5) 4(p) -

To decrease volume of calculations the response function is defined as truncated

L 2
a,f{;i—ﬁ,)) d’p — min (1.3.11)
')

Gaussian function

/()= 1'3’“’(‘ o*/w), s < (1.3.12)

Correspondingly, the elements of matrix (1.3.5) are calculated as

Ay = ; Z H‘r[ﬁu)‘ﬂ[ﬁu —ﬁx)'ﬁ(ﬁu —5x}:
Py y—y =2 (]‘3‘13}
Bo= Y W) £ilp-5)-#5.0)

—_

Por—Palcdw

The actuators were fastened in nodes of an equidistant grid. Coordinates of
nodes (xz yy), I =1, ..., L, was calculated according to the formula

¥= —R+[!/JE]-&',
¥, =-R+{I/NL}- VL -d.

|
|
(1.3.14) ‘
Here the entire part of a variable is marked by square brackets and its ‘

submultiple by curly brackets, R is a radius of the corrector.
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A segmented mirror

Modern segmented mirrors differ by the two main parameters: by form of
segments and by the number of degrees of freedom for an element. The whole
number of elements is also varied.

The form of elements is usually square or hexagonal. The number of
freedom for an element differ from one (control of piston) to three (control of
piston, tip, and tilt).

Mathematics description of the surface .§ of such a mirror is also possible

with the use of response functions

L _
SG) = 2.4 wp-5)- £(p-p) (1.3.15)
where response functions f; are defined in a form
£(3) = G,
£i(p) = Ax+ By, (1.3.16)

f,(ﬁ) =Ax+ By+C,
The first formula corresponds to an element with one degree of freedom, the
second to an element with two degrees of freedom and so on.
An aperture function of the corrector is equal to unity inside the corrector

aperture and to zero behind the aperture.
T | P

For a corrector with square elements definition of ihe aperture function 1S simple

A
4 (1.3.17)

T i
M m

(*)_{L d<d/2nly<di2
®1=10, > d2vii>df,

L

(1.3.18)

where d is a size of an element. More difficult is definition of an aperture
function for a corrector with nexagonal elements. Difficulty arouses especially
when the corrector with a given number of actuators should be inscribed in an
aperture with a given size.

In the algorithm developed by us this problem is solved in a following way.
The input parameters of the procedure are radius of the corrector aperture R and

number of the rings N of elements. One ring corresponds to a 7 - element
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corrector, 2 to 19 - element corrector, 3 to 37 - element corrector and so on.
The first step is definition of the radius of a circle r circumscribed about an
element. The circle is so calculated that an aperture of the radius R would be

entirely filled by elements. We obtained the following formula:

- R
3. [N+ /2-1]

for a even N, (1.3.19)

and
R

= = foran odd N
J3/4+(32-N +12)

After that the coordinates of centers of segments are calculated according the
following iterational formula

o 1L [ m-&L,, {k/m} =0
Lo {ﬁ..n \+ A,y {k/m}=0"

]

m=L...,.N, £k=0,....6m-1;

(1.3.20)
£ fym=o,
H+% {k/mj=0’

A =+3r (E, cosg,,, + €, sin r.p,_l,t} Qs = {
where m is a number of a ring, k£ is a number of a segment inside a ring, by
curly brackets is marked fractional part of variables.

To define if a point of the grid is inside a segment we employ a following
algorithm. The length of a line is calculated which connects the center and
border of a segment and runs through the chosen point with coordinates (x, y):

V3r
2cos{o, - *-[0,/3]-3)
An aperture function of a segment 1s defined as

w(p) = {é E L z”‘“g 5=(x) (1.3.22)

P (X, ¥) = o, = arctan,(x}, ) (1.3.21)

The control vector {A;. B, Cj} is found as a result of minimization of

approximation errors
o2 = [W(EIw(E-5.)(/(6-5) - 8()) @’ — min (1.3.23)

This problem is also can be solved by the least squares method
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Statical model of a flexible mirror
In numerical experiments as a flexible mirror we also used the model of a
thin homogeneous plate. Static deformations of the plate were described by
equation of biharmonic type
gw ow  w
D == o
&t &y o

J =[(x,y), (1.3.24)

where (x, y) are the coordinates in the plane of the plate, D is the cylindrical
stiffness, and fis the lateral load. At the points of fastening of the mirror on the
frame (at these points the plate cannot be shifted, and deformations appear when
tilting the mirror) the boundary conditions can be written in the form:

_ W

*4-}‘4} = lﬁ'l = U! (1325]

¥l

|{x. il

while at the hinged point (where tilting causes no deformations)

v 3
2w OW
Wi, =D[‘;, s ﬁ,) -0 (1.3.26)
in¥i = or

(xi i)
Here 8/6n and 8/at are the normal and tangential derivatives with respect to the
plate plane, and o is the Poisson coeflicient.

Numerical solution of Eq. (1 3.24) was found by the finite—element method
/31/. According the method, the plate was divided into a set of elements, with
the local coordinate system (OE, On) affixed to each element. Deformations of

each element were described by the vector

W =

T TR AT

where ¢ is the vector of lateral shifts of the element angular points (nodes of a

computation grid). ¢ and 7 are the vectors of tilt angles with respect to the Of

and On axes. The vector W has 3N, components, where N, is the number of
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nodes of a grid bounding the element.
The vector of generalized forces () is associated with the vector of

generalized coordinates W and has the form

0=

e || ::L hu'.

where P is the vector of shearing forces, N and T are the vectors of deflection

moments with respect to the axes of the local coordinate system. The relation

between W and (0, found by the virtual displacement method, has the form /31/
kW -f=0. (1.3.27)

The first term in the left—hand side of Eq. (1.3.27) describes the generalized
forces of elastic deformations ([k] is the stiffness matrix of an element), and the
second term describes the external forces. In the right—hand side of Eq. (1.3.27),
the forces of interaction between the elements are involved. The stiffness matrix
[k] is found as an integral of the element potential energy density, in this case the
calculation is significantly simplified with limitations on the shape of deflection.
For the deflection shape described by a finite power series, the matrix [k] was
calculated and presented in Ref. 31.

Taking into account the conditions of element conjugation that follow from
the requirement for the continuity of the field of model displacements as a whole
and equilibrium of interaction forces between elements, an equation 'describing

static deformation of the whole model can be derived

[K]ﬁ? =F. (1.3.28)

Here F is the vector of external forces (the vector is 3N_—dimensional,
where N, is the number of nodes of the model). The stiffness matrix of the plate
[K] also can be found from the conditions of element conjugation, with the order

of the matrix being 3N _x3N_. Here, it should be emphasized that even for rare

grid the operation with the matrix [K] is difficult because of a large number of its
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elements (this concerns mainly the operations of matrix inversion and data
transfer from a hard disk to a random—access memory; the last procedure

requires too much time). Thus for the grid 9x9 (N, = 81) the matrix [K] is of
order 243x243.

The order of the stiffness matrix [K] can be decreased? (reduction is

accomplished), and operations with it are simplified if only transverse forces are

exerted to the model, i.e., the vector F included in Eq. (1.3.28) is of the form
P
F=40}.
0

In this case the stiffness matrix components to be multiplied by the zero

components of the F vector can be excluded beforehand. The second reduction
of the matrix [K] is carried out using the data on the geometry of actuator
arrangement, assuming that at the points where the actuators are absent external
forces do not act on the model. As a result of reduction, the order of the matrix
is decreased down to (N_—N_ )xN_ (N_ is the number of actuators), i.e., for 9x9
grid the stiffness matrix for a mirror with five actuators would be of the order

76x5. that is, much lower than before the reduction.

Numerical model of a dynamic mirror

In the design of an adaptive optical system we have constructed a numerical
model of a dynamic mirror enabling us to record the transient processes under
deformation of a flexible plate. In this case deflection of the reflecting surface
W(x, y) was described by the matrix equation which, as equation (1.3.28), was

obtained on the basis of the virtual work principle /31/

MW +[MW «[MW =F. (1.3.29)

Here [M], [G], and [K] are the inertia. oscillation damping, and stiffness
matrices, respectively. The system of equations (1.3.29) was solved by the

Runge—Kutta meéthod /32/. The result of the system solution was the dynamic
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field of lateral shifts of the model nodes, which describes the movements of the
plate under the action of given forces. On the basis of this computational
scheme the models of a mirror shown in Fig. 2a and b were constructed.

The transient processes illustrated in Figs. 3 and 4 occur when reproducing
the given surface by the dynamic corrector. Shown here are the shifts of the
points arranged on the mirror radius and the standard deviation &(7) of the
corrector surface Wix, y, 1) from the given profile ¢(x, y) defined by the formula

“.(f.v(x'y} =W {x.y.f))zp(x,y)dxdy

é(t) = = ;
Ax,y)" px,y)dxdy

where p is the weighting function.

Let us consider the accuracy of parabolic surface approximation by a flexible
mirror. The action F was determined by the least—squares method. In

Eq. (1.3.28) the vector F was introduced as follows (step action):

!U t <0,

g [(fis for-ou i)y 120,

Here f, are the components of the vector F ., and n is the number of actuators.
Because the damping coefficient was chosen small enough, it is practically
imnossible to see the damping of surface uscillations in the figures. The
amplitude of oscﬂ]atiuns of the function £ is small \u comparison with its values,
but without damping the accuracy of surface reproduction is insufficient (for a
similar static mirror in focusing reproduction ¢ is 0.10—0.12, see Ref. 33). The
data presented demonstrate the increase of frequency with the decrease of the

distance between the clamped points and points of force application.
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FIG.2 . Models of a flexible dynamic mirror: points of actuator locations
(@ nd points of mirror clamping on a frame ( - _) are shown. The serial
numbers of points where surface displacements were registered are shown

on the models.

rad
40 ), pan

Fig.3 Fig.4

FIG. 3. Transient processes for the model of a mirror shown in Fig.  2a:

shifts of reflecting surface at points 1—5 (a) and rms error £(1) (b).

FIG. 4. Transient processes for the model of a mirror shown in Fig. 2b.
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Earlier we considered the use of dynamic mirror in multidither algorithm
/33/. In this case the necessity of signal filtration for separation of variations of
sensing radiation before completion of transient processes was shown, At present
the efficiency of the phase conjugation algorithm with account of natural
oscillations of reflecting surface of a corrector is investigated. Changing the
method of force application to a mirror, we are supposed to decrease the
influence of transient processes on a control algorithm. As an illustration, the

oscillation of the surface driven by smoothly increasing components of the vector

F rather than by its step components is shown in Fig. 5. The significant decrease

in the oscillation amplitude is observed.

1.4. Computer codes

Based on the numerical algorithms considered in the previous paragraphs,
we have developed the program package for simulating the operation of an
atmospheric adaptive' optical system. When conducting numerical experiments
the software package provides the following possibilities:
—setting of conditions of beam propagation (propagation in linear medium,
under conditions of thermal blooming. in the turbulent atmosphere, under joint
action of both latter factors);
— setting of the expenimental geometry (vertical, slant, and horizontal paths);
— setting of the components of the adaptive system (the type of an adaptive
mirror and a wave—front sensor);
— selection of the algorithm for beam control (phase conjugation, inversion of
wave front);
— use of the set of service functions (solution of the problem and recording of
amplitude and phase distributions at each step as well as with the subsequent
plotting of dynamics, graphic representation of the results on a display screen
and/or on a printer).

As a separate program unit with a built—in interface, the package includes

the model of a flexible static mirror constructed on the basis of the finite—
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b

Fig. 5a. Oscillations of the mirror, the model corresponds to Fig. 2b.

Fig. 5b. Loading of the mirror surface, forces applied in points 4, 5, 7
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element method /31/. The mirror parameters are set before running the basic
program. When forming the adaptive system element base the mirror is included
into the full model.

The developed program package is adapted to WINDOWS what makes it
possible to use the VISUAL BASIC language® supported by this system. VISUAL
BASIC enables one to implement the program control and parameter
input/output operations of the torm convenient for an user. At the same
time, the basic computational procedures are written in FORTRAN language,
what provides higher speed of operation as compared with VISUAL BASIC and
has a wider set of built—in functions. The interaction is performed using the
dynamic DLL library in which some subroutines written in FORTRAN are

stored.

Setting of propagation conditions and forming the element base of an adaptive
system

The parameters of an adaptive system are set by means of a specially
developed graphic interface. In this case the program can be controlled using a
computer keyboard or a mouse. Figure 6 shows the principal window of
interface appearing on the display screen when making reference to the program.
The column with the keys of the parameters setting occurs in the right—hand part
of the window. They serve for initiating the following functions.

Key group Prop is intended for the selection of the beam propagation
conditions (propagation under conditions of thermal blooming, in the turbulent
atmosphere, vacuum, or with simultaneous consideration of turbulence and
nonlinearity).

Key group Correct is intended for the selection of the algorithm of
compensation for distortions. It is possible to consider the beam propagation in

the absence of correction as well as to realize the control based on the algorithm

of wave front inversion or phase conjugation.
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Key group Sensor is intended for selection of the wave—front sensor (an
ideal sensor, a possibility to supplement an ideal device with the algorithm of
Joining of phase surface, and introduction of a Hartmann sensor into the system).

Group Mirror is intended for selection of an adaptive mirror.

Six half—tone figures occur in the central part of the interface main window.
These figures show:

1) mtensity of the basic or reference beam (according to the user's choice) in the
plane of the emitter aperture;

2) phase distribution of the reference beam;

3) beam intensity distribution in the observation plane at thermal blooming;

4) phase distribution recorded by the wave—front sensor;

5) phase surface reproduced by an adaptive mirror;

6) running distribution of beam intensity in the observation plane.

The output to supplementary windows of the interface, by means of which
the beam parameters (power, radius, wavelength) are set as well as the
atmospheric parameters (wind velocity, turbulence intensity, absorption

coefficient, and so on) is done via the menu of the main window.

Setting parameters of a flexible mirror

As was noted above the setting of parameters of the flexible static mirror In
the above considered program package is formulated as a separate block. The
basic interface windows are described in the present section.

With the call to the program, the first window appears in the display screen
(Fig. 7), which provides for
— output of parameters of the mirror model recorded beforehand (the key
"Current version of the mirror”);
— calculation and recording of the rigidity matrix of a new model of the mirror
(the key "New version of the mirror”);

— completion of the program operation (the key "Exit").
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As a result of the call to the block for reading the rigidity matrix parameters,
the panel DEMO appears in the screen (Fig. 8). In the left upper corner of this
panel the diagram of the mirror is given. The points of actuator fastening are
denoted by circles, the points of mirror fastening to the base are denoted by
squares. Besides, the panel shows such parameters as the material of the plate,
the number of actuators and points of fastening as well as the dimension of the
computation grid. This block makes it possible to assess the quality of

reproducting the lowest Zernike polynomials with the mirror (the Kkeys

" on L]

"defocusing,” "astigmatism,’ "coma," "sph. aberration”). When pressing these
keys the image of the reproduced polynomial and ‘he mirror surface appears at
the lower left, the screen shows t!i» value of the rms error of reproduction.

If the other rigidity matrix should be given, the program block is controlled
by means of the interface panel "Main Panel” (Fig. 9). Here the user can select
material of the plate and set the dimension of the computation grid (maximum
size 18 21x21). The number of mirror actuators, which cannot exceed the
number of nodes, also depends on the latter parameter. The program operation
is facilitated by the instructions at the screen.

Setting of the geometry of actuators location is done with the panel given in
Fig. 10. In the lefti—hand part of Fig. 10, the calculating grid is presented where
the points of possible location of actuators are denoted by the squares. To set
the point, the mouse cursor is positioned on the chosen square. The position of
actuators is set by single press and cancelled by double press. The geometry of
points of mirror fastening to the support is set analogously.

Once the parameters are set the reference is made to the FORTRAN
program for calculating and recording the ngidity matrix. The results of
calculations can be seen upon calling to the panel DEMO.

In addition to the programs described the work is in progress to make the

block for calculating the deformations of dynamic mirror and its graphic

interface.
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CHAPTER 2. PARTIAL CORRECTION
FOR TURBULENT DISTORTIONS IN TELESCOPE

In order to provide complete compensation for turbulent distortions in the
visible range at the aperture dimensions typical for modern telescopes (6-10 m)
one needs for the development of adaptive systems with hundreds of control
channels. More simple adaptive systems providing a complete compensation in
the infrared range can give an essential advantage in angular resolution in the
visible range too. In this case the image brightness characterized by the Strehl
ratio remains much less than that in the diffraction-limited case, i.e., the system
provides only partial compensation.  In this section we present the results of
numerical calculations of the partially corrected point spread function (PSF) and

discuss possible approaches to composing the adaptive system configuration.

The spatial frequency spectrum of turbulent distortions is sufficiently wide, and
although the lowest frequency wavefront aberrations (slopes and quadratic
aberrations) give the largest contribution to the phase fluctuation variance for a
telescope of large aperture a compensation for these aberrations does not improve
the image quality essentially. Therefore to achieve a sufficiently high level of
compensation the wavefront correctors with a large number of degrees of freedom

ought to be used.

The complexity and cost of such devices grows rapidly with requirements to
their spatial resolution. Therefore it is necessary to choose such a configuration
of the corrector which, on the one hand, should not lead to excessive
complication and cost rise of an adaptive optical system (AOS) and, on the other
hand, should be able to provide a sufficient increase in the image quality.

Moreover, as the compensation efficiency depends also on the operation of
other units of AOS, the characteristics of a compensating device (configuration,
spatial resolution, and frequency range) must be coordinated and balanced with
the parameters of other units of the adaptive optical system, for example, a

reference source and wavefront sensor.
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The topic of partial compensation has receive plenty qu aﬁention in the
literature /1,2,3,4/. In Ref.l was performed some one-dimensional numerical
simulation to test atmospheric wave front correction when the active element is
not matched to the correlation scale in the pupil. The results demonstrated that
substantial seeing improvement can be obtained with an adaptive optical system
having a limited number of active elements. However, the Gaussian model for
the atmosphere used in Ref.l is a substantial simplification and is certainly not
accurate at all scales. Results of Ref.2 illustrates that even a modest number of
actuators can produce an image with essentially diffraction-limited resolution
superimposed upon a background of scattered light. In Ref.3 the use of limited
degree-of-freedom adaptive optics in conjunction with statistical averaging and

linear image reconstruction algorithm is considered.

Here we expand consideration of partial compensation and present the partially
compensated PSF for various kinds of corrector, for quantum noise effect and for

cone anisoplanatism.
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2.1 Wave front correctors and partial correction of the PSF

At present three basic types of wavefront correctors have been developed for
adaptive telescopes: a modal corrector, a zonal corrector, and a segmented one.
Let us consider the requirements to a spatial resolution of these devices based on

simple analytical estimations and a more detailed simulation.
Modal corrector

Modal corrector is such a hypothetical compensation device whose response
functions make up an analytical basis, and Zernike polynomials are normally
chosen as this basis. Since, the first terms of the Zernike series coincide with the
analytical representation of the classic wavefront aberrations (distortion,
defocusing, astigmatism etc.) the theory of modal corrector allows one to simply
obtain estimations of the efficiency of the low-order adaptive compensation.
Moreover, such correctors as bimorphic mirrors allows us to reproduce up to 30

of Zernike aberrations with an admissible accuracy.

A number of theoretical studies /5,6,7,8/ dealt with the theory of modal
corrector in application to compensation for turbulent distortions. Approximate
estimations of the modal corrector efficiency can be done based on the results
from Ref. 6 where the variance of residual distortions in the phase of a wave
corrected was calculated as a function of the normalized diameter D/ry of a
telescope aperture and of the number of Zemike polynomials which are
compensated for with a modal corrector. Corresponding formula is as follows

ok = Cx (D/m)*, 2.1.1)
where N is the number of aberrations compensated for. Values of the coefficients
Cy are presented in Table I where N = | corresponds to the compensation for a
constant component, N =3 corresponds to the compensation for a constant
component and slopes (linear aberrations), N=6 corresponds to the

compensation for up to quadratic aberrations inclusive etc.
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TABLE 1. Values of the coefficients Cy

N1 1 3 | b 10 |15 | 21
Cy |1.03 0.134 0.0648 0.0401 0.0279 0.0208 |

For large values of N an approximate formula can be written

Cy=0.2944 N-¥12,

This theoretical results allow one to estimate the variance of residual distortions
for a given parameter N of a modal corrector and vice versa, for a given level of
the residual distortions, to determine the number of polynomials which ought to

be compensated for. For example, to reach the level of residual distortions
corresponding to the criterion A4/6 (o ﬁ,r = 1) we obtain the estimation

N=0.244 (D/m)**2. (2.1.2)
Taole I illustrates the dependence of N on the normalized aperture diameter.

TABLE I1. Dependence of the number of modes N on the normalized aperture

diameter

D/my| 10 | 20 | 30 | 40 | s0
N |20 78 170 295 454

For such a number of degrees of freedom of the modal corrector the Strehl ratio
approximately equals to
S=exp (— of) = 1/e = 0.37. (2.1.3)

Obviously the bimorphic mirrors available now /9/ are not able to provide such
compensation level in the visible range (when the most probable value of
D/ry = 40-50) but their use for the compensation in the infrared range (for
D/ry = 10-15) seems to be quite reasonable. Moreover, as it will be shown
below, and for higher values of the residual error variance the angular resolution
close to the diffraction one (defined as the width of PSF at half maximum) can

be obtained.
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Calculations of the optical transfer function (OTF) for the modal
compensation were performed in a number of papers (for example, in Ref./7/)
but the OTF bears no direct information on the angular resolution. Let us

consider the results of the numerical experiment we have carried out using our

own software.

Turbulent distortions were simulated in approximation of a phase screen with a
given parameter n. Intensity fluctuation did not allowed for. For computations
we employed 128x 128 mesh of discretization and performed averaging over 100
random phase screens. Phase screens were generated and PSF was calculated
with the use of discrete Fourier transform. Detailed description of the procedure
of image forming simulation in the system “atmosphere - telescope” can be
found in Ref. /10/.

The wavefront distortions were considered known (the model of an “ideal”
sensor was used). A control by the corrector was determined on the base of
minimization of integrated square error of the compensation. Calculations was
performed for several values of the normalized aperture diameter
D/ry = 10, 20, 30. The simulation of the modal compensation was performed for
the values N =3, 10, I5, 21, 28 that corresponds to compensation for the
wavefront aberrations from Ist to 5th radial degrees inclusive.

Figure 1 (page 52) presents PSFs of a modal adaptive optical system obtained
by simulation. The partially corrected PSF consists of two components. The
width of the first component is equal approximately to the turbulent PSF and
the angular size of the second component is diffraction-limited. Figure 2
(page 53) presents the radial cross—sections of the normalized PSF as functions of

the telescope normalized diameter and the compensation parameter .

According to the data of Table Il to obtain the perfect correction of distortions
for D)/ry =20 one need a modal corrector with N =78. But even with N =10 the
first diffraction rings are seen in the central part of PSF, though intensity of the

central maximum of PSF is 66 times less than that for diffraction-limited case

(SR =0.015).
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Let us consider radial cross-sections normalized on the axial values of PSF
which represented in Fig.2. Normalization of such kind allows one to consider
the structure of PSF at different levels of residual error. Strehl ratio is shown in
the legend of Fig. 2. At D/ry = 10 and N = 21 we obtain SR = 0.44. The data of
Table 1 allow one to conclude that to obtain SR = 0.37 at D/m = 10 we should

take N = 20. So the results of numerical experiments correspond to analytical

estimations.

It is interesting to consider how the parameter characterizing the contrast of
PSF changes with increase of the aperture diameter and number of corrected
distortions. Let us define the contrast as a ratio of the axial ihtcnsity to the
intensity of the first diffraction ring. When two point objects are located at the
angular distance about A/D the contrast determines the ratio of intensities at this

the dim object is seen with the background of the bright one.

In Fig.3 the dependence of the contrast on Strehl ratio is represented for
modal correction. It is seen that at equal Strehl ratios the contrast is greater for
large apertures. So a sharp diffraction circle appears earlier, i.e., at the higher
level of turbulent distortions (the residual aberrations are high). The possible
explanation is: at the lower level of intensity the turbulent components of the
partially corrected PSF and its diffraction-limited part are characterized by the
greater contrast for the same values of SR. It is seen that the high contrast
diffraction limited core is observed up to the values of the Strehl ratio of the
order of 0.01. This fact is not obvious and could be established only by direct
calculation of the PSF.

Really, it could have been expected that a decrease in the axial image intensity
by the factor of 10 leads to its, approximately threefold broadening. since the
intensity is inversely proportional to the square of effective dimension with the
invariable “form™ of the intensity distribution in the image plane. However,
when compensating for the lowest aberrations the spatial spectrum of wavefront
distortions changes essentially. The small-scale aberrations not compensated for

cause a redistribution of the corrected PSF power in the far “wings” (as
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compared with the turbulent PSF for the same phase distortion variance). In this
case the effective dimension of image is more than it could have been expected
but the width of PSF at half maximum only slightly differs from the diffraction
one. This gives a possibility to carry out astronomic observations connected with
the measurement of object angular positions with the accuracy close to the
diffraction one, even for the comparatively “poor”™ (by the Strehl ratio)

compensation.

The following practical conclusions can be drawn. The use of bimorphic
mirrors (the most close to a modal corrector by their characteristics) can be
recommended at the first stages of the development of adaptive optics. Bimorphic
mirrors will be able to provide a high level of the compensation in the far and
middle infrared ranges and will provide partial correction in the near infrared
range. It is hardly worth expecting the creation of bimorphic correctors in the
visible region unless a good mirror is manufactured with about 100 to 200 control
channels. Imaging binary stars with widely different brightness, and searching for

planets may not be practical with partially compensated system.
Zonal and segmented correctors

Resolution close to the diffraction limited one, at small values of Strehl ratio,
is also achievable with other types of wavefront correctors. Let the deformable
mirrors of a zonal type and segmented correctors be considered from this point
of view.

In contrast to the modal corrector it is characteristic of zonal correctors that
application of a signal at one of the control points effects the shape of deformable
mirror surface only in the part, under the influence of a given control channel.
The deformable mirrors actuated with the piezoelectric elements stack to the rear
side of the mirror are most widely used correctors of the zonal type. The “effect
zone” dimension of a control element is determined by the distance from the

nearest adjacent drive. Outside this zone the “response”™ of a mirror plate rapidly

decreases.
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Segmented adaptive mirrors also can be referred to the zonal class in the sense
that the control of one mirror element does not affect the state of the rest its
segments provided that no special connection is arranged. A distinguishing
peculiarity of segmented mirrors is the presence of the surface breaks which are

caused by the non-joint of adjacent segment edges.

For zonal type correctors /11,12/ as well as for the segmented mirrors /15/ the

residual error variance of the phase correction is described by the formula
2
o’ = C (d/n)*">, (2.1.4)
where d is the corrector characteristic scale. i.e., the distance between the control

points of a zonal corrector or dimension of a segmented mirror element, and the

coeflicient C depends on the peculiarities of a corrector performance.

This expression is obtained within the Kolmogorov turbulence theory and can
be used in the case when the outer turbulence scale exceeds the corrector scale d.

Otherwise this formula overestimates residual distortions.

The value of the coefficient C for a segmented corrector can be estimated
approximately based on the modal compensation theory considered in the
previous section neglecting the fact that the shape of a controlled element is
different from a circle. Since, for the isotropic turbulent distortions the variance
of the residual correction error coincides with the variance of errors on a separate
segment then C=1.03 for the control of a segment location and C = 0.134 for
the control of location and slopes of segments. For a deformable mirror with the

Gaussian response function the estimation C = 0.2 can be used /7/.

The number of control elements, which are necessary for obtaining a given

level of residual distortions can be estimated by the following formula

N =(EF = ormcrde. @.15)

Table 111 presents the estimations of the number of elements N for both corrector

types calculated for the level of residual distortions corresponding to o2 = 1. The

upper line of the Table presents the values of the aperture normalized diameter
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(10 ... 50). Next two lines correspond to a segmented corrector, and the last line
corresponds to a flexible mirror.

TABLE III. Estimations of the number of corrector elements N

D/ny 10 (20 30| 40 | 50
C=1.03 104 414 932 1657 2590
C=0134 9 36 81 143 224
C=0.2 14 58 130 232 362

In Fig 4. the results of simulation are presented for a segmented mirror taking
D/d = 11. Such spatial resolution is sufficient for the complete correction at
D/ry = 30, but even for D/my = 50 normalized PSF is, practically, diffraction
limited in the boundaries of the first bright ring. At the same time Strehl ratio
equals to 0.1, ie., axial intensity is on the order of magnitude less than
diffraction limited value.

Similar calculations were performed for a deformable mirror with the Gaussian
response function. Results of this calculations are presented in Fig. 5. According
to Table III resolution with N = 9 is sufficient for the complete correction only
with D/ry = 20 but with D/ry = 50 diffraction core is developed in PSF with

contrast close to 6.

Summing up the considered aspect of the partial correction we note that the
appearance of a sharp diffraction core against the backgruﬁnd of a rﬁrﬁulence
distorted image occurs earlier (for large residual distortions) at higher level of the
initial turbulent aberrations. It is explained by the fact that at lower intensity of
the turbulent component in the partially corrected PSF its diffraction-limited
part 18 characterized by a greater contrast for the same value of the Strehl ratio S.

For example, if for an uncorrected image the Strehl ratio S is 0.001 then the
partial correction increasing the image axial intensity up to the level S = 0.01
leads to appearance of diffraction component of a PSF with the contrast
parameter (ratio of the axial intensity to the intensity at the level of the first
diffraction ring) of the order of 10. To obtain the same contrast at the initial
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distortion level corresponding to S= 0.01 it is necessary to compensate for
turbulent distortions up to the level corresponding to S= 0.1 that is reached at

an essentially lower value of the variance of phase residual distortion.

It may be expected that already at the first stages of the development of
adaptive optics for telescope it will be possible to achieve the angular resolution
close to the diffraction one even at low values of the Strehl ratio. Although in
this case a power portion concentrated in the diffraction circle will be much less
than its diffraction-limited value the advantage as compared with an uncorrected
image can be essential. First of all, this will provide a possibility to carry out
accurate angular measurements in the visible region.
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FIG. 1. Two-dimensional intensity distribution of PSF for the modal compensation.

Value of the aperture normalized diameter is Dfry = 20.
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FIG. 2. PSFs, when a modal corrector is used. Parameter N corresponds to the
number of Zernike polynomials. PSF is normalized to the axial value. S is the

Strehl ratio.
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FIG. 3. The dependence of the contrast on Strehl ratio for modal correction.
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FIG. 4. PSF, when the sezmented adaptive mirror with 84 elements of hexagonal
form is used. Every segment is controlled by the position and slopes. a — PSF is

normalized by its axial value. b — PSF is normalized by the diffraction maximum.
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2.2 Hartmann sensor and partial correction

Even if we have got a wavefront corrector with a sufficiently high spatial
resolution the performance of an adaptive correction is impossible without a
device measuring aberrations of the optical wave to be corrected. Since, the
correction quality will be determined by the weakest member of the chain
“measurement—compensation” during the development of an adaptive system one
should make a choice balancing the characteristics of both a corrector and

wavefront sensor.

Measurement of atmospheric aberrations of optical waves coming from
astronomic objects in a real time has a set of specific peculiarities. First of all,
these are fast temporal vanability of aberrations and low level of the light flux
/16,17/. Other peculiarity is a wide spatial spectrum of distortions. This spectrum
is characterized by the presence of both small-scale and large—scale distortions
that impose higher requirements to the dynamic range of wavefront distortion
sensor (WFS). At present the Shack-Hartmann /8/ sensors are most widely used.
Prototype of this sensor is the known classic Hartmann sensor widely used in the

problems on testing astronomic oplics.

Numerical model of the Shack-Hartmann sensor with a modal algorithm of
retrieving from the Zernike polynomials /10/ is included as a component in the
applied software we have developed to study the problems on adaptive formation
of beams and images in the atmosphere. This model allows us to investigate the
accuracy of measurements of the wavefront aberrations depending on the number
of subapertures, quantum noise level, relationship between subaperture dimension
and coherence radius, and estimating algonithm.

For this sensor spatial resolution is defined by the subaperture size and
temporal resolution by the time of exposure. The product of subaperture area,
exposure time, and intensity of reference signal defines the number of

photoelectrons (Npy) at the output of the sensor. This number is a parameter

which defines signal to noise ratio.
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Let us consider the effect of photon noise on the correction quality. In
numeric experiments we will use a model of Shack-Hartmann sensor with 10x 10
array of subapertures. To reconstruct a map of aberrations let us employ a modal
reconstruction algorithm calculating 28 Zernike polynomials. Let us assume that
ideal corrector reproduces exactly all aberrations and the aperture diameter is
equal to 10r. So the radius of subapertures is equal to the coherence length. The
delay of correction is assumed to be zero. Turbulent distortions are simulated in
phase screen approximation, no intensity fluctuations are allowed for.

PSFs computed in this numeric experiment are shown in Fig. 6. Average
number of photons (N,) incident on a sensor subaperture at exposure time
varied in the interval 5—100. In the figure PS[s are shown for (Nyp) = 5, 10,
100. For (Npp) = 100 Strehl ratio is equal to 0.38. This value is close to the result
obtained for a modal corrector with the same number of corrected aberrations
(N = 28) when the model of an ideal sensor was used (SR = 0.53). The
difference can be induced by a small error due to noise. At (N,p) = 5 the axial
value of PSF decreases almost twice and SR = 0.19. It can readily be seen from
the comparison of PSFs normalized on axial value that the radius of PSFs
changes only a little and the contrast is still equal to 10 even at this level of
noise. Further decrease of reference wave intensity results in sharp increase of
variance o~ of residual phase distortions and decrease of SR.

So the increase of phase aberrations along with decrease of a reference source
brightness results in a two-component structure of corrected PSF. We can see a
turbulent circle and diffraction core.

These requirements to the intensity level determine the minimal brightness of a
reference source, and in combination with the isoplanatism angle value and
distribution of stars with such brightness over the celestial sphere determine the
portion of this sphere area where the effective compensation for turbulent
distortions is possible. Different estimations show that this portion does not

exceed several percent and depends on operation wavelength and turbulence
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altitude profile. To provide the qualitative compensation on all area of the

celestial sphere it is necessary to create an artificial reference source.
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FIG. 6. Results of the simulation of an adaptive telescope with the Shack-Hartmann

sensor. Normalized diameter of the aperture is Dfry = 10. Dimensions of the sensor

lens diaphragm are 10 x 10. Estimation of the wavefront aberrations was performed
by the modal algorithm (28 Zernike polynomials). Parameter N corresponds to the

average-statistical number of photons at the subaperture during one exposure.
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2.3 Cone anisoplanatism and partial correction

Two basic types of the anisoplanatism are distinguished in the image correction
schemes used at present: the angular anisoplanatism and cone anisoplanatism.
The first one occurs for the object image correction using reference wave from a
star Jocated at a certain angular distance from this object. When correcting
image of an extended object the angular anisoplanatism manifests itself in the fact

that only a part of the object laying within isoplanatism zone is sharp.

Cone anisoplanatism takes place when a laser guide star (LGS) is used as a
reference source. In this case the source angular position, as a rule, coincides
with the angular position of the observed object, but the latter is at infinity and
the LGS altitude is limited within the effectively scattering atmosphere. In
contrast to the “classic” angular anisoplanatism the angle between the beam
paths of the reference and corrected waves changes as a function of distance
between the considered point and the center of receiving aperture.

Let us consider the effect of this error on PSF. We assume the infinite spatio-
temporal resolution of the adaptive optics system, absence of noise, and the
cone anisoplanatism as the main source of errors. The atmosphere is stimulated
by a number of phase screens. Passing of a wave through the phase screens is
computed in geometric optics approximation not allowing for diffraction effects
and intensity fluctuations. We assume that the angle of arrival fluctuations are
corrected with the use of a bright natural star.

The altitude profile of turbulence intensity we take corresponding to Gurvich’s
model of «the best conditions». Aperture diameter is D = 10m, that correspond
to the diameter of Keck telescope and Russian telescope AST-10 (presently under
development). The altitude of an artificial beacon H was taken equal to 10 and
100 km. that correspond to schemes with Rayleigh and sodium beacons. Above
this we varied wavelength in the interval form 1 to 5 um in the case of Rayleigh

beacon (H = 10 km) and from 0.5 to 2 um in the case of a sodium beacon (H =

100 km).
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Figure 7 presents the PSF for this versions of the LGS. It is clear that the use
of Rayleigh reference source is effective in the infrared range only (small values of
D/n). Use of the sodium LGS allows one to obtain good correction quality in
the infrared range and makes it possible to provide nearly diffraction limited
angular resolution under the condition of partial compensation in the visible
region of spectrum.

In the visible range the radius of PSF is also close to diffraction limited one
with SR = 0.23 and contrast greater than 10. Taking into account the fact that
angular coordinate is normalized on the ratio /D one can conclude that in

optical range the angular resolution is higher as compared with IR region.
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FIG. 7. PSFs of the 10-meter telescope at different wavelengths for the adaptation

using a laser guide star.
lower plots are for the Ravleigh LGS (H = 10 km).

Upper plots are for the sodium LGS (H = 100 km), the

At the left plots the PSF is

normalized to the diffraction maximum, at the right plots the PSF is normalized to its

axial value. The wavelength . is given in um.
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CONCLUSION

Let us sum up the analysis of partial correction for turbulent aberrations. We
have considered three variants of the idealized adaptive system. In each case we
allowed for only one factor influencing residual distortions of PSF. In the first
variant the spatial resolution of the corrector was taken as such a factor, noise of
the sensor was taken in the second variant, and cone anisoplanatism in the third.
In the all cases we found out that radius of PSF increases relatively slow and the
width of PSF is almost diffraction limited for large residual distortions.

These results are analogous with the results of uncorrected PSF for finite outer
scale of turbulence. Partial correction is, first of all, correction for the lowest
aberrations which correspond to large scale inhomogeneities of the atmosphere.
Particularly it is true in the case when the main factor is a finite Spétial resolution
of correcting device. Aberrations induced by inhomogeneities with size greater
than size of a corrector element can be compensated and the spectrum of
residual aberrations is the same as a spectrum with outer scale equal to the size of
an element.

From the stated above the case of diffraction core appearance is clear.
Explanation can be found in analysis of phase structure function, OTF and PSF.
Phase structure function D(p) saturates at level 2> with the value of argument p
about turbulence outer scale Ly or corrector element size d. Atmospheric optical
transfer function (p) = exp(-D(p)/2) decreases to value exp(-o,2) and saturates
too. So OTE consists of the narrow peak OTF; witk: the width about Lg or 4 and
wide component OTF3:

OTF = OTF; + OTFR;

PSF is Fourier transform (FT) of OTF so PSF = FT(OTF, + OTF,) = PSF+
+PSF;. Since width of Fourier transform is inversely proportional to original
function, narrow component OTF; transforms to wide component PSF,

(turbulent seeing). and wide component OTF; transforms to narrow component

PSF, (diffraction core).
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